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ABSTRACT

FEATURE-BASED CORRESPONDENCES TO INFER THE LOCATION OF

ANATOMICAL LANDMARKS

Robert J. Tamburo, Ph.D.

University of Pittsburgh, 2006

A methodology has been developed for automatically determining inter-image correspon-

dences between cliques of features extracted from a reference and a query image. Cliques

consist of up to three features and correspondences between them are determined via a hi-

erarchy of similarity metrics based on the inherent properties of the features and geometric

relationships between those features. As opposed to approaches that determine correspon-

dences solely by voxel intensity, features that also include shape description are used. Specif-

ically, medial-based features are employed because they are sparse compared to the number

of image voxels and can be automatically extracted from the image.

The correspondence framework has been extended to automatically estimate the location

of anatomical landmarks in the query image by adding landmarks to the cliques. Anatomical

landmark locations are then inferred from the reference image by maximizing landmark cor-

respondences. The ability to infer landmark locations has provided a means to validate the

correspondence framework in the presence of structural variation between images. More-

over, automated landmark estimation imparts the user with anatomical information and

can hypothetically be used to initialize and constrain the search space of segmentation and

registration methods.

Methods developed in this dissertation were applied to simulated MRI brain images, syn-

thetic images, and images constructed from several variations of a parametric model. Results

indicate that the methods are invariant to global translation and rotation and can operate

iv



in the presence of structure variation between images. The automated landmark placement

method was shown to be accurate as compared to ground-truth that was established both

parametrically and manually. It is envisioned that these automated methods could prove

useful for alleviating time-consuming and tedious tasks in applications that currently require

manual input, and eliminate intra-user subjectivity.

Keywords: feature-based correspondences, anatomical landmark placement, medialness,

the correspondence problem, similarity metrics.
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1.0 INTRODUCTION

1.1 GOALS AND MOTIVATION

Medical imaging has permitted clinicians and researchers to look beneath the surface of

the skin to obtain critical diagnostic information and scientific insight. Computational

techniques such as segmentation (separating objects from their neighbors) and registration

(aligning images to each other) have been developed to aid with the analysis of these images,

but have not advanced at the same rate as the imaging technologies themselves. Many such

methods are manual or semi-automated requiring varying degrees of user interaction, making

them tedious and time-consuming, especially for three-dimensional (3D) images. Addition-

ally, these methods require users to be trained, and results are often subjective. Complete

automation has been difficult to achieve due to inherent anatomical variation, image noise,

and discontinuous structure boundaries. Nonetheless, the potential benefits to the medi-

cal and research communities are motivation for the continued development of automated

image analysis techniques. For example, a method for automatically and accurately seg-

menting anatomical structures would provide a means to calculate quantitative measures of

the underlying anatomy to assist clinicians in identifying pathologies, making diagnoses, and

treatment planning.

An area of image analysis that deserves attention is the correspondence problem because

it forms the basis of many image analysis methods. The correspondence problem can be

stated as matching a specified element in an image to its corresponding element in another

image. If such a correspondence can be established, these elements share the same identity

or label. Determining correct correspondences is nontrivial for several reasons. Typically,

correspondences can be determined once the images have been aligned with a spatial trans-
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form. However, solving for rigid or nonrigid transforms with unknown correspondence is

a difficult problem. Moreover, the correspondence problem is usually ill-posed since there

may be several possibilities for correct correspondences. There are two main approaches

for establishing correspondences: those based on intensity correlation and those based on

feature similarity.

Correlation-based methods establish correspondences by sampling a local neighborhood

of voxels (window) in the first image, and shifting the window across the second image

until the correlation between the window and the underlying voxel intensities is maximum.

This approach relies on a semi-uniform intensity mapping between the two images making

it sensitive to image noise, structure distortion, scanner settings, etc. Correlation-based

methods tend to be computationally expensive since each window may have to be shifted

across the entire second image. The accuracy of such methods can be moderated by utilizing

different window sizes. In the presence of image noise and distortion, smaller windows can

localize the corresponding point more accurately than larger windows.

Alternatively, feature-based methods establish correspondences by matching features ex-

tracted from the images (e.g., points, lines, ridges, corners) by means of a similarity measure.

The set of features is sparse compared to the set of image voxels, and thus establishing cor-

respondences between features is less demanding than establishing correspondences between

voxels or patches of voxels. The success of feature-based methods is dependent on how well

the similarity measure can differentiate between features.

Both approaches to the correspondence problem are commonly used and suffer from

similar difficulties in the presence of image noise and structure deformation. The feature-

based approach is more attractive because only sparse sets of features are considered, and the

method, depending on the features used, can be flexible to variations in intensity and shape.

In this light, a correspondence hierarchy based on measuring the similarity between cliques

of features has been developed in this dissertation. Each type of clique consists of a singlet,

doublet, or triplet of features. Cliques of multiple features describe the geometric relationship

between the comprising features. Inter-image clique correspondences are determined via a

hierarchy of similarity metrics. The metric for identifying correspondences between singlets,

doublets, and triplets are the unary, binary, and trinary metrics, respectively.
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By means of Receiver Operator Characteristic (ROC) curve analysis, the accuracy in

determining correct clique correspondences can be quantified for each metric. As will be

shown, correspondence accuracy improves with each successive metric. Although the trinary

metric has greater accuracy over the unary and binary metrics, incorrect correspondences still

exist. A second goal of this dissertation is to extend the metric hierarchy to further reduce

the number of incorrect correspondences by introducing a global analysis of the cliques based

on implied transforms.

Another goal of this dissertation is to explore the use of correspondences to automatically

place labeled, anatomical landmarks in an image. Anatomical landmarks identify locations

of interest to a human user. Landmarks differ from image features in that they are directly

related to underlying anatomy and have unique identities, whereas image features are locally

processed from the image itself and are not necessarily unique. Analogous to landmark-

based registration, a reference image containing predefined landmarks is used to place those

landmarks in a new query image. By adding landmarks to cliques containing features,

landmark location can be inferred from the correspondences. For example, consider a clique

from the reference image that consists of features from the thalamus, amygdala, and pons. A

clique with a similar geometric relationship between structures is sought in the query image.

Once that correspondence is established, a landmark can be automatically placed in the

pituitary gland based on its relationship to the other structures given that such a landmark

was previously placed in the pituitary gland of the reference image.

It is envisioned that automatic landmark placement could be employed for labeling

anatomical regions, define regions of interest, initialize segmentation or registration algo-

rithms, or build atlases or models. In this dissertation, estimating landmark location will

play a key role in validating correspondences. In practice, a lack of ground-truth for corre-

spondences is a problem for evaluating methods because surfaces are complex and variable,

resulting in subjective interpretation. Correspondences will be validated by how accurately

they can infer the location of specified landmarks under various geometric perturbations.

Ground-truth will be established from a parametric model of a human brain. The para-

metric model will deliver exact landmark locations, and allow for systematic variation of

the model geometry. Images generated from the parametric model will permit the extrac-
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tion of sets of image features for testing the robustness of the correspondence and landmark

placement methods. The features used in this dissertation are called medial nodes, which

encapsulate the local medial properties of shape providing rotationally invariant shape prop-

erties of dimensionality and scale localized on the medial manifold of an object. The method

for extracting medial nodes is discussed in Section 2.3.1.

Independent of anatomical target and imaging modality, it is envisioned that determin-

ing feature correspondences and estimating the location of anatomical landmarks could be

accomplished by an automated system that would serve as a tool for recognizing anatomical

shapes or foreign bodies, as well as making critical diagnostic measurements. The system

would alleviate tedious work by clinicians and researchers, and could also be useful to medical

students and other healthcare professionals as an interactive teaching utility.

1.2 SUMMARY OF GOALS AND CLAIMS

The goals of this dissertation are outlined below with each associated claim:

1. Automatically determine feature-based correspondences:

As opposed to approaches that determine correspondences solely by intensity, corre-

spondences will be determined between cliques of image features by utilizing geometric

constraints and a hierarchy of similarity metrics. Receiver Operator Characteristic curve

analysis will be employed to initially assess the accuracy of each correspondence metric.

Claim 1: By using a hierarchy of similarity metrics, inter-image correspondences be-

tween cliques of features can be determined.

2. Improve correspondences with implied triplet transforms:

The accuracy of the correspondence framework will be improved upon by introducing a

global analysis of triplet configurations. Each triplet correspondence implies a transform

that maps a triplet in the query image to a corresponding triplet in the reference image.

From these transforms, a correspondence likelihood will be calculated for every possible
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triplet correspondence. The correspondence likelihood will strengthen true correspon-

dences and weaken false correspondences.

Claim 2: By incorporating global geometric constraints into the correspondence hierar-

chy, correspondence accuracy can be improved.

3. Generate validation data from a parameterized model:

Images will be computer generated from a parametric model to approximately emulate

a Computed Tomography image of a human brain. Brain structures will be modeled by

parametrically defined shape primitives, and combinations of such shapes. The use of

parametrically defined data will permit systematic perturbation of structure geometry

and establishing ground-truth for landmark location towards the goal of assessing metric

performance (Goal 5).

Claim 3: By defining a parametric model, it is possible to establish ground-truth towards

the goal of validating correspondences in the presence of variations in structure geometry.

4. Automatically estimate anatomical landmark locations:

Given that landmarks have been manually or parametrically placed in a reference image,

the same landmarks will be automatically placed in a query image by incorporating

landmarks into cliques and the correspondence framework. Landmark locations will be

inferred from correspondences and geometric relationships between cliques that consist of

nodes and landmarks by means of an optimization procedure that maximizes landmark

correspondences.

Claim 4: By incorporating landmarks into the correspondence framework, their locations

can be inferred from feature-correspondences and automatically placed in a query image

to validate the correspondence method, as well as provide anatomical information to the

user.

5. Assess metric performance in the presence of geometric variation:

Metric performance will be studied as a function of geometric variations between struc-

tures. The parametric model (Goal 3) allows for systematic perturbation of the data to
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create query images that differ from the reference image and establishes ground-truth

for landmark locations. The anatomical landmarks discussed in Goal 4 will establish a

ground-truth independent of these variations. Correspondence metrics will be validated

by their accuracy in estimating landmark locations in the query image.

Claim 5: By computing the accuracy of inferring the location of anatomical landmarks

in a query image, correspondences can be validated for images that differ by structure

geometry.
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1.3 DESCRIPTION OF CHAPTERS

Including the current chapter, this dissertation consists of 9 chapters and a bibliography.

Chapter 2 An overview of medical imaging, medical image segmentation and reg-

istration, landmark extraction, and medial-based image analysis is pro-

vided.

Chapter 3 The framework for determining clique correspondences and an initial

method for quantifying and validating correspondence accuracy is de-

tailed.

Chapter 4 A method for improving correspondences by incorporating global trans-

form constraints is described.

Chapter 5 The parametric brain model and validation data are defined.

Chapter 6 Anatomical landmarks are defined and the optimization procedure for

inferring landmark locations from clique correspondences is developed.

Chapter 7 Results of inferring anatomical landmark location in the presence of

geometric variations of the underlying anatomy are reported.

Chapter 8 Programming techniques utilized in this dissertation are described.

Chapter 9 Conclusions of this dissertation, claims are reviewed, and potential di-

rections of future research are explored.
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2.0 BACKGROUND

2.1 OVERVIEW OF MEDICAL IMAGING

After Dr. Roentgen inadvertently discovered X-rays in 1895, they were almost immediately

applied to medicine when Dr. Edwin Frost performed the first clinical X-ray scan in early

1896. These projected images dramatically affected the medical community by providing a

means to non-invasively look into the body of a patient. The newly acquired visual informa-

tion assisted doctors and other healthcare professionals in making diagnostic decisions. The

clinical value of such images was immediate and spawned the invention of other modalities

of medical imaging.

High frequency sound, called ultrasound, was first generated in 1876 by Francis Galton,

but would not be applied to medicine until 1937 when Karl Dussik began investigating its use

as a diagnostic tool by visualizing brain structures and making ventricular measurements.

Dussik et al. presented their initial findings in 1942 [1] and later published ultrasound images

of a human brain in 1947 [2]. In 1965, engineers at Siemens created the world’s first real-time

ultrasound machine, generating live two-dimensional (2D) images and displaying them on a

video screen.

Nuclear Magnetic Resonance (NMR) spectroscopy was first described by Felix Bloch

and Edward Mills Purcell in 1946. Bloch and Purcell observed that nuclei in a magnetic

field absorbed energy if a Radio Frequency (RF) pulse at the nuclei’s resonant frequency

was applied. A spectrum of the magnitude of the NMR resonance signal for a molecule

was later found to describe its structure. For 26 years, NMR was primarily used to study

molecular properties until Paul Lauterbur extended NMR to produce images of internal

body structures. This new technique, called Magnetic Resonance Imaging (MRI), operates
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by introducing gradients into the magnetic field allowing for spatial localization of emitted

RF waves, and thus 2D tomographic images can be constructed and stacked sequentially to

form 3D images [3].

In 1972, Godfrey Hounsfield utilized X-ray technology and built the first Computed

Tomography (CT) prototype. In a CT scanner, an X-ray source and X-ray sensors are

positioned on opposite sides of a circular gantry. The gantry rotates 360◦ to collect a single

slice of data. The subject is then moved forward and the gantry rotates 360◦ in the opposite

direction to collect another scan. Once the entire set of scans is complete, the data is

reconstructed to form, like MRI, 2D tomographic images that can be stacked to form 3D

images [4].

Each of these imaging techniques offers a unique insight into the human body. For

instance, ultrasound produces real-time 2D images that are useful for observing the behavior

and condition of dynamic objects, such as the heart and a fetus. Two-dimensional ultrasound

images can be reconstructed to 3D after data acquisition, but are no longer real-time and have

poor image quality compared to MRI and CT images. MRI and CT produce high-resolution

images that are effective for visualizing objects in the body, but require significant time

for image reconstruction following data acquisition [5]. Dynamic objects can also be studied

with CT and MRI by gating the scans to the electrocardiogram (ECG). Unfortunately, gated

scans are averaged over many cardiac cycles degrading the resolution of the image.

These imaging techniques continue to rapidly evolve, offering faster data acquisition,

quicker image reconstruction, and higher image resolution. For example, at Duke Univer-

sity, in the early 1990s Real-Time 3-Dimensional (RT3D) ultrasound was developed. RT3D

utilizes a matrix array transducers to capture 3D ultrasound data at a scan rate fast enough

to acquire cardiac data throughout its cycle [6, 7].

In the mid-1980s, the power slip ring was developed, which transfers electrical power

from a stationary power source to a continuously rotating gantry. This new technology

lead to the development of spiral CT in which the gantry continuously rotates around the

patient resulting in much faster scan times as compared to conventional CT. An even faster

method of acquiring CT images called Cine Computerized Tomography (cine-CT) was later

developed, which does not require any mechanical motion. In cine-CT an electron beam is
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swept across a large, stationary anode that surrounds the patient. When electrons strike the

anode, X-rays are emitted, pass through the patient, and get measured by a stationary array

of detectors. Images from a cine-CT system are acquired very rapidly, permitting non-gated

studies of cardiac function, though at a lower resolution than conventional CT.

In the field of MRI, much research has been conducted in manipulating pulse sequences

and other scanner parameters to produce MRI images that contrast tissue differently. An

example of such structural MRI images are T1-weighted, T2-weighted, proton density, FLuid

Attenuated Inversion Recovery (FLAIR), and SPoiled Gradient Recalled (SPGR) acquisi-

tion [8]. In addition to imaging structure, functional information can be imaged via the

hemodynamic response related to neural activity in the brain. This form of MRI is called

Functional MRI (fMRI) and utilizes an MRI pulse sequence to detect blood oxygenation,

which can be an indication of activation areas in the brain.

Physiological processes can also be imaged with nuclear imaging, which involves the

injection of radioactive tracers into the patient for diagnosis and therapy. Tracers can be

designed to tag molecules for targeting specific sites. After the tracer is administered to the

patient, the patient is positioned in front of a detector array, and the radiation emitted from

the body is measured and constructed into an image. These images are fairly low resolution

with a high amount of noise due to the inability of using high radiation doses. The detector

array can be stationary, collecting a single projection image, or it can be made to spin around

the patient as in CT to collect tomographic images. The two main tomographic methods in

nuclear medicine imaging are Single Photon Emission Computed Tomography (SPECT) and

Positron Emission Tomography (PET). In SPECT the tracers used emit gamma radiation

while decaying and in PET the tracers used produce positron-electron pairs, which in turn

create high energy photon pairs [4].

During the development of conventional medical imaging techniques, computational

methods of image reconstruction have been essential to image visualization. In recent years,

medical imaging has moved beyond the role of visualizing anatomic structure and physiologic

function, becoming a tool for surgical planning and simulation [9, 10] and intra-operative

navigation [11, 12]. Doctors use these images to extract information critical to diagnosis and

treatment by identifying, measuring, functionally assessing, and locating structures.
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2.2 MEDICAL IMAGE ANALYSIS

To further assist doctors with the diagnosis and treatment of disease, the medical image

analysis community has faced the challenge of extracting clinically useful information from

images of various modalities. For example, advances in cardiac and brain imaging have lead

to a deeper understanding of various pathologies and physiological anomalies. In cardiac

imaging, abnormal cardiac contractions can be observed by tracking the cardiac surfaces

through the cardiac cycle, thereby identifying valve disease or arrhythmia. A measure of left

ventricular volume can be utilized to calculate cardiac function parameters such as stroke

volume and ejection fraction. If myocardial volume and thickness can be measured and

healthy valves are assumed, stroke volume and cardiac output can then be calculated to

determine the health of heart tissue. Each of these measured quantities can be useful in the

diagnoses of cardiovascular disease, including cardiomyopathy, ischemia, myocardial infarc-

tion, and congestive heart failure. In brain imaging, Alzheimer’s disease can be detected by

measuring ventricular volume, subarachnoid cerebrospinal fluid space, or hippocampus size.

Schizophrenia can be diagnosed by making measures of the corpus callosum and thalamus.

Strokes, as well as the presence of brain tumors, can also be detected through the use of

image analysis.

Unfortunately, image analysis as a means to assist doctors in extracting such information

has evolved much slower than imaging technology itself. For instance, it is still generally not

feasible to automatically analyze medical images with accuracy and efficiency even though

the images provide a high resolution survey of internal anatomy.

The field of medical image analysis covers a large number of areas of interest such as

segmentation, registration, classification, object recognition, and shape representation. In

general, image analysis methods can be classified as manual, semi-automated, or automated.

Manual methods require the user to directly interact with the image to complete the

task. Manual methods tend to be very subjective and dependent on inter- and intra-user

variability. They tend to be time consuming and tedious, but accurate, assuming that the

user is a reliable expert. For this reason, manual methods are often used to validate the

accuracy of semi-automated or fully automated algorithms. With semi-automated methods,
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the user can initially interact with the image to provide image information to the algorithm,

or make modifications to the method during run-time based on feedback provided. Ideally,

semi-automated methods are faster than manual methods, minimally affected by user vari-

ability and error, and provide reproducible results. Automated methods do not require user

interaction, and instead utilize a training or learning procedure. While automated methods

completely remove the user from the process, some are so computationally intensive that

they may be actually slower than manual methods. Additionally, without the assistance of

a user they can fail when dealing with the difficulties common to medical images such as

image noise, weak boundaries, and structure complexity and variation.

This section begins with a brief overview of two common areas of image analysis: the

segmentation and registration of structural, static images. This is by no means a complete

survey of segmentation and registration in medical image analysis, but provided to illustrate

the motivation for this research. This section concludes with a review of semi-automated

and automated landmark extraction methods.

2.2.1 Medical Image Segmentation

The goal of medical image segmentation is to isolate anatomical structures of interest from

the background and surrounding tissues. This process is typically governed by labeling

voxels to indicate what each voxel corresponds to in the real world. For example consider

an algorithm for segmenting the thalamus from an MRI brain image. Such an algorithm

would label all voxels that correspond to the thalamus as belonging to the thalamus, and

every other voxel as not belonging to the thalamus. Such a segmentation would thus pro-

duce an image with voxels labeled as either: thalamus or not thalamus. A wide variety of

segmentation applications exist in medical research, such as volumetric visualization, quan-

titative measures of anatomical structures, construction of anatomical atlases, and tracking

of anatomical change over time. Although this dissertation does not directly develop a seg-

mentation method, it is still reviewed here because methods developed in this dissertation

could potentially improve existing segmentation techniques.
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As intuitive as object segmentation is to people, it translates to a very difficult problem

and elaborate procedure for computers. Medical image segmentation is such a prevalent and

difficult task that it has been an active area of research for several decades. Yet, a general

segmentation procedure that is truly robust for all imaging modalities and anatomical targets

is still a much desired goal. Some difficulties of image segmentation arise from the imaging

process itself. During data acquisition and image reconstruction, boundaries between objects

are often blurred and most supposedly homogenous regions are not truly homogeneous due

to image noise. Although the human visual system is able to deal with these issues, even

the most advanced algorithms often falter. The complexity and variability of anatomical

structures also makes it difficult to segment objects without knowledge provided by an expert

user or knowledge built into the system. Some common approaches can be categorized as

follows: threshold-, histogram-, region-, edge-, contour-, model-, texture-, and hybrid-based

approaches [13, 14]. Presented here are some common approaches to semi-automated and

automated based methods. For a more thorough review of segmentation in medical imaging,

refer to [15, 16]. Before delving into these segmentation approaches, manual segmentation

is described.

Manual segmentation consists of either hand labeling voxels or tracing the boundary of

the structure of interest. For clinical use, an expert with knowledge of the anatomy utilizes a

mouse to perform the segmentation while looking at the computer screen. This is a relatively

straightforward task with 2D images, but becomes problematic with 3D images because of the

limits of effectively visualizing 3D images on a computer screen. Thus, the user is required

to perform the segmentation on each 2D slice in the image volume, having to mentally

reconstruct the structure of interest while viewing adjacent slices in the volume to correctly

reconstruct the structure in 3D. As previously mentioned, manual segmentation is a time-

consuming process, subject to inter- and intra-user variability. Consequently, it is generally

avoided if a more autonomous method exists for the structure of interest. However, despite

its shortcomings, manual segmentation is frequently used as a gold standard for validating

newly developed segmentation algorithms.

A compromise between manual and automated methods are semi-automated methods.

Semi-automated segmentation methods depend on user interaction to provide information to
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the system. Among the simplest of these methods are threshold-based methods. The most

primitive threshold-based method is to simply label voxels that are within a user-specified

intensity range, which is usually determined by trial and error. More advanced threshold-

based methods utilize the image’s intensity histogram to decide on a threshold that would

best segment the object from the background. These conventional threshold methods use

a single global threshold [17]. The success of these methods depends on histograms with

nicely separable peaks. For images whose histograms have more than two modes, multiple

thresholds can be decided upon. A method called adaptive thresholding utilizes one or more

thresholds based on local image characteristics [18]. One such method, developed by Otsu,

selects threshold levels to maximize the ratio of the between-class variance to the within-class

variance [19].

Another semi-automated segmentation method based on voxel intensity is region growing.

With region growing methods, a seed voxel is selected by the user to initialize the region

within the structure of interest. Neighboring voxels that satisfy a homogeneity criteria are

then added to the region until a convergence criteria is satisfied, such that the region fills the

structure of interest [20]. Similarly, mathematical morphology involves dilation of regions in

addition to erosion, opening, closing, etc [21, 22]. The most often used morphology operator

for segmentation is the watershed operator, which has led to a method of segmentation called

watershed segmentation [23]. In watershed segmentation, pixels are found at the midpoints

between features by treating pixel values as topographic elevations. The areas between these

features become catchment basins that segment objects.

Structures are ideally delineated by a closed boundary. Many segmentation methods

first employ a scheme that identifies boundaries by measuring rapid changes in intensity.

Since boundaries are typically discontinuous, gaps are filled in some manner, and thus the

set of voxels contained by the boundary is considered the segmented structure. Structure

boundaries may be detected by identifying areas of high intensity gradient magnitude. Clas-

sical gradient operators such as the Prewitt, Sobel, and Roberts Cross convolution kernels

detect a boundary by taking an image derivative. These kernels deliver gradient magnitude,

but also amplify high-frequency image noise. The Canny detector addresses this problem by

first convolving the image with a Gaussian kernel, finding putative edges using the gradient
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and connecting them to form edges. Another classical boundary detector is the Laplacian of

Gaussian filter, which locates boundaries by taking the second image derivative and locating

zero crossings [13, 18].

In addition to utilizing image intensity and intensity gradient for structure segmenta-

tion, global shape assumptions can be made. One such assumption is that anatomical

structures will have smooth boundaries without high curvature. Methods that may enforce

such constraints include snakes (active contours) [24], deformable models [25], and level sets

[26, 27, 28]. These methods formulate the segmentation problem as an energy-minimization

problem, where a curve evolves in the image until it reaches the lowest energy state, i.e.,

the curve is close to the structure boundary. These types of models subject the curve to

external and internal forces which control its evolution. External forces are derived from

image information, causing the curve to stop evolving, for example, when the curve reaches

a high-gradient boundary. Internal forces control the shape of the curve causing it to, for ex-

ample, have a speed proportional to its curvature, which would quickly smooth sharp curves

while keeping low curvature regions the same.

Automated segmentation algorithms generally provide an anatomical model. Most semi-

automated methods can be automated by providing an anatomical model rather than relying

on user supplied information. Two examples of anatomical models are atlases and shape

models. Atlases are often created by a manual or semi-automated segmentation method

of delineating the structure of interest. Shape models may be derived from a training set

of images with Principal Component Analysis (PCA) or other methods of dimensionality

reduction. Shape models encapsulate more information than atlases because they capture the

anatomic variation of the training set [29, 30, 31]. Originally, the actual construction of the

shape model required manual identification of anatomical landmarks. Since the conception

of shape models, there has been research into automating landmark extraction. A review of

these methods is presented at the end of this chapter. Segmentation is usually performed by

iteratively repositioning and transforming the model in the image to minimize a distance or

energy function such that the model best fits the underlying image data. This transformation

process is the subject of medical image registration, which is discussed in the following

section.
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2.2.2 Medical Image Registration

Medical image registration is a correspondence problem with the goal of spatially aligning

two images such that correspondences are established between image voxels. Registration

is a necessary process for comparing or integrating information from multiple images. Im-

age registration has many uses in the medical field such as 1) combining information from

multiple imaging modalities, 2) relating individual patient anatomy to standardized atlases,

3) monitoring changes in structure size, shape, or intensity, and 4) relating pre-operative

images and surgical plans to the patient during image guided surgery. The remainder of this

section briefly reviews three basic approaches of intrinsic registration, that is, methods that

rely only on patient data. For a more thorough review on medical image registration, the

reader is referred to [16, 32, 33].

The three approaches of registration reviewed here are based on aligning segmented

structures, voxels, and landmarks; these are called, respectively, segmentation-, voxel-, and

landmark-based registration.

Segmentation-based registration methods either rely on a rigid or deformable model.

With a rigid model based method, structure segmentations from both images are used to

align the images via a global rigid transform [34, 35, 36, 37, 38]. The registration accuracy

of segmentation-based methods is typically limited to the accuracy of the provided segmen-

tations. As previously discussed, the difficulty of the segmentation task depends on the

structure of interest, and a wide array of segmentation methods are available. Rigid models

are typically used for intra-subject registration and deformable approaches are necessary for

inter-subject and atlas registration. With deformable models, an extracted structure from

one image is deformed to fit the second image. The extracted structure is commonly rep-

resented as snakes or active contours. Similar to the contour-based methods discussed for

segmentation, the deformable model is fit while minimizing an energy function [39, 40, 25].

Often a template generated from an atlas image is registered to a segmented or unsegmented

image with global rigid or affine transformations. If there are local deformations in the tem-

plate that drastically differ from the target structure, the registration will typically fail. To

address such problematic issues, local transformations are permitted.
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Voxel-based registration methods operate directly on the intensity values of the image

voxels. There are two distinct approaches to voxel-based registration methods. One ap-

proach immediately reduces the number of voxels to be considered. These methods compute

the image center of gravity and principal axes from the zeroth and first order moments.

Registration is then performed by aligning the center of gravity and principal axes. Re-

searchers have attempted to improve results by computing higher order moments with some

success. Resulting registrations are not usually very accurate, but are automated and very

fast to compute, which is well-suited for applications such as image re-alignment and pre-

registration [41, 42, 43, 44]. The second approach utilizes the entire image. Since all voxels

are considered throughout the registration process, the method is very flexible. Computa-

tional costs are considerable, but manageable with modern computer technology. The goal of

this approach is to optimize transform parameters while minimizing a cost function or max-

imizing a reward function that is based on voxel properties. There are many cost functions

and reward functions available such as those that 1) minimize variance of intensity ratios

[45], variance of intensity values within segments [46, 47], histogram entropy difference [48],

histogram dispersion [49, 45], or squared intensity differences [50, 51, 44], or 2) maximize

cross-correlation [52, 42, 53], mutual information [54, 55], zero crossings in difference images

[56, 57].

Landmark-based registration methods attempt to identify a global transform that max-

imizes the mapping of landmarks to each other. The transform can then be applied to

an image to spatially align the voxels between images. Landmarks can be anatomical

[58, 59, 60, 61] or geometrical [62, 63, 64, 65, 66]. Classically, anatomical landmarks are

salient and reliably locatable points on anatomical structures, i.e., the tip of the nose, that

are manually identified by the user. Geometrical landmarks are typically features extracted

from the image such as boundary points, local curvature, corners, and edges. The optimum

transform may be determined by minimizing a distance measure such as the Procrustes

metric, which is defined as the least-squares distance between each landmark and its corre-

sponding landmark. Standard optimization methods such as Powell’s method, Levenberg-

Marquardt, gradient descent, and the downhill simplex method are often utilized to minimize

the distance measure. Non-standard optimizers such as the Iterative Closest Point (ICP)
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algorithm have also been developed for this particular problem. The ICP algorithm is pop-

ular because it is computationally fast and can be used for curves, surfaces, and volumes in

addition to specifically corresponding points [67]. Since the set of landmarks is sparse com-

pared to the number of image voxels, landmark-based registration is typically very fast and

efficient. Transforms are typically limited to rigid or affine unless a large set of landmarks

is available. A disadvantage of these methods is that extracting landmarks is typically a

manual, time-consuming process. Consequently, there has been investigation into partially

and fully automating geometric landmark estimation methods.

A majority of landmark estimation methods operate by detecting specific features (geo-

metric landmarks) from the images then determining correspondences between them. One

type of landmark can be detected with first-, second-, or third-order differential operators

to locate regions of high intensity gradient [68, 69, 70]. Pielot, et. al., determine correspon-

dences between landmarks detected with a first-order differential operator by pre-aligning

and gridding the images, then looking for maximum gradient in each grid [71]. Another

type of landmark can be detected by locating points on a contour of high curvature (critical

points) with an angle or corner detection scheme [72, 73, 74]. Correspondences between

extracted landmarks can be determined by any of the methods previously mentioned. Hill

et. al., have developed a method of landmark estimation without requiring landmarks to be

extracted from both reference and query images. Their method relies on first generating a

shape model from a set of training images. Landmarks are chosen to best approximate the

mean shape as the vertices of a sparse polygon. Landmarks can then be projected into each

of the images in the training set from the shape model [75].

Each of these approaches requires prior knowledge about the type of landmarks to be

detected. Geometric landmarks may be useful, but do not necessarily relate to manually

defined landmarks used by a clinician. In this dissertation landmarks are not restricted to

underlying image features. The landmarks can be placed anywhere in the image that a user

desires. The correspondence problem and landmark estimation problem are separate such

that once correspondences between image features are established landmarks can be inferred.

Ultimately, the goal of image registration is the determination of correspondences be-

tween inter-image voxels for comparing the underlying anatomy between images. This dis-
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sertation addresses the correspondence problem, not for individual voxels, but for image

features. Grimson proposed that correspondences between image features can be found

based on geometric constraints [76]. The correspondence method developed in this dis-

sertation utilizes geometric constraints between cliques containing image features to auto-

matically identify inter-image correspondences. Analogous to landmark-based registration,

the correspondence method developed in this dissertation attempts to identify correspon-

dences between image features (the term landmark is reserved for anatomical landmarks in

the remainder of this dissertation). However, rather than utilizing feature correspondences

to register image voxels, the locations of anatomical landmarks are inferred from feature

correspondences.

2.3 MEDIAL-BASED IMAGE ANALYSIS

There are many different approaches to image analysis. A bottom-up approach based on

the medial properties of shapes has been chosen as the foundation of the proposed research.

The medial axis, as defined by Blum for 2D binary images, is the locus of centers of circles

that are at least bi-tangent to an object boundary and fit entirely within the object [77]

(Fig. 2.1). Similarly in 3D, the centers of medial spheres define a medial manifold that

is at most 2D. Pizer et al. developed a measure called medialness to extend the medial

manifold to three-dimensional gray-level images [78, 79]. Medialness links the aperture of

a boundary measurement to the radius of the medial manifold. The ridge of medialness is

called a core. Methods using medialness have proven robust against image noise and shape

variation [80, 81, 82, 83, 84, 85, 86, 87, 88]. These methods include shocks [89, 90, 91, 92],

skeletons [93, 94, 95], m-reps [85, 96], and core atoms [80, 84, 86]. Core atoms have been

chosen for the features to be used in this dissertation because they are a bottom-up approach

that is computationally efficient and have proven successful in identifying (with the use of a

pre-determined model) the left ventricle in RT3D ultrasound.
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Figure 2.1: A homogeneous rectangle on a uniform background. Circles are bi-tangent and the
dashed line indicates the medial axis of a rectangle as defined by Blum.

2.3.1 Core Atoms

Core atoms are formed from a collection of boundary points that consist of a local mea-

surement of gradient magnitude and orientation, such as those delivered by a Difference of

Offset Gaussians (DoOG) gradient detector [97, 98]. A core atom is constructed from a pair

of boundary points if the following two requirements are satisfied:

1. The distance between the boundary points b1 and b2 is within a specified range. This

constraint permits computational savings if there is a priori information about the ex-

pected width of the structure. This distance is termed the scale of the resulting core

atom and is defined as the L2-Norm of the vector s1,2 that extends from b1 to b2 as

||s1,2|| = ||b2 − b1||, (2.1)

where smin ≤ ||s1,2|| ≤ smax and the expected width is between smin and smax. The

vector s1,2 indicates the direction from b1 to b2. The core atom is defined to be located

at the midpoint between the two boundary points.

2. There is sufficient face-to-faceness, i.e., the boundary point gradients face each other.

Face-to-faceness is defined as

F (b1,b2) =

∣∣∣∣( s1,2

‖ s1,2 ‖
· n1

)(
s2,1

‖ s2,1 ‖
· n2

)∣∣∣∣, (2.2)
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where ni for i = 1, 2 is the normalized gradient of the bi boundary point. There is

sufficient face-to-faceness if F (b1,b2) is close to 1, which allows some variation in the

orientation of the boundary points relative to s1,2.

2.3.2 Medial Nodes

A local population of core atoms whose centers fall within a certain region can be analyzed

in terms of their orientations. For 3D data, there are three basic core atom configurations;

“koosh-ball,” “spokes-of-a-wheel,” and “bed-of-nails.” The “koosh-ball” configuration occurs

when core atoms are formed within a spherical surface. The core atom vectors form the koosh

spikes and the centers of the core atoms cluster near the center of the sphere. Core atoms

formed on a cylinder result in a “spokes-of-a-wheel” arrangement, with core atoms located

along the cylindrical axis. Core atoms that form within the surfaces of a slab will yield a

“bed-of-nails” configuration across the interior of the slab with core atom centers clustered

on a 2D plane between the surfaces of the slab. Each of these basic core atom configurations

are shown in Fig. 2.2.

sphere cylinder slab

Figure 2.2: Top shows basic shapes in dark gray with corresponding core in light gray. Below
these are shown the corresponding basic core atom configurations (from left to right): “koosh-ball,”
“spokes-of-a-wheel,” and “bed-of-nails” (with core atoms shown as line segments).

For a given population of core atoms, their orientation vectors can be statistically pro-

cessed using eigenanalysis of the covariance matrix, to yield a measure of dimensionality
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and an overall estimate of orientation. The resulting eigenvalues λ1 < λ2 < λ3 define the

local dimensionality of the core and the corresponding eigenvectors â1, â2, â3 define a coor-

dinate system specific to the orientation of the core atom population. The eigenvectors are

ordered such that â1 is most orthogonal to the population of core atom vectors and â3 is

least orthogonal to the core atoms, i.e., most aligned with the core atoms. The eigenvalues

are greater than or equal to zero and sum to 1. A value of 0 indicates that the corresponding

eigenvector is completely orthogonal to every core atom in the population. This is true for â1

in a cylinder and â1 and â2 in a slab. For a sphere, no eigenvectors are orthogonal to every

core atom since the core is a point. Since the eigenvalues sum to 1, they can be viewed as

a system with only 2 independent variables defining a triangular domain called the lambda

triangle (Fig. 2.3).
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Figure 2.3: The lambda triangle. The eigenvalues in the box describe the perfect sphere, cylinder,
and slab, i.e., the vertices of the lambda triangle.

The lambda triangle’s vertices represent the three basic medial shapes in 3D (sphere,

cylinder, and slab). All possible sets of eigenvalues are bound by the triangle. Arbitrary

thresholds, γ1 and γ2, placed on λ1 and λ2 divide the triangle into 3 compartments, which

designate dimensionality for visualization purposes. Sampling core atoms on a regular grid

is convenient, but medial properties measured in this manner are prone to displacement

from the true core, a result of the face-to-faceness threshold and sampling artifact. The
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displacement from the true core may cause a misclassification of local dimensionality for

core atom populations that are under-sampled. Clustering neighboring samples of core atoms

overcomes this displacement problem, using methods described by Stetten [80]. A clustered

core atom population is analyzed as a single medial node. The location of a medial node in

image space is the center of mass of the corresponding core atom population, and the scale

of the medial node, σ is the average scale of that population.
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3.0 AUTOMATED FEATURE-BASED CORRESPONDENCES

In this chapter, the method for automatically determining correspondences between medial

nodes (often referred to simply as nodes) is detailed. Node correspondences are determined

by first determining correspondences between cliques consisting of medial nodes. Three

different types of cliques are considered: singlets, doublets, and triplets. Singlets consist of

one node, doublets of two nodes, and triplets of three nodes. Determining correspondences

between each type of clique are governed by a unique correspondence metric. The metrics

for evaluating correspondences between singlets, doublets, and triplets are the unary, binary,

and trinary metrics, respectively.

The unary metric identifies corresponding nodes by their similarity in dimensionality

and scale. Doublets and triplets incorporate geometric relationships between the constituent

nodes, and correspondences are determined from metrics invariant to global rotation and

translation. Identifying correspondences relies on using these three metrics in succession.

Although medial nodes are employed in this dissertation, the correspondence method de-

veloped here provides a general framework for determining correspondences between cliques

containing any feature. The framework, based on identifying similar cliques relies on a

hierarchy of similarity metrics inherent to feature properties and geometrical relationship

between clique constituents. Other features can be utilized by reformulating the similarity

metrics to incorporate information delivered by the type of feature. For example, consider

boundary points calculated with a gradient-based convolution kernel. The unary metric

could be formulated to evaluate for similarity in intensity and gradient magnitude. The rel-

ative orientation between boundary points in a doublet can be calculated from the gradient

vectors.
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Figure 3.1: Framework for identifying correspondences between cliques of medial nodes.

The framework for identifying correspondences with this metric hierarchy is shown in

Fig. 3.1. After each step in the metric hierarchy, correspondences become more accurate,

as will be shown with Receiver Operator Characteristic (ROC) curve analysis at the end of

this chapter.

The chapter concludes with several experiments that demonstrate the correspondence

framework and ROC curve analysis.
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3.1 PRELIMINARIES

Presented here is the notation used to derive the methodology of the correspondence frame-

work. The reference image is denoted as R and the query image is denoted as Q. Let Ψα be

the set of all medial nodes extracted from an N-dimensional image denoted as α, e.g., ΨR

is the set of nodes extracted from image R. The number of nodes extracted from image α is

denoted as Mα, i.e. Mα = |Ψα|.

The ith medial node in Ψα is denoted as nα,i. The ith clique from image α is generally

represented by its set of nodes Cα,i such that |Cα,i| = k, where k is the number of nodes in

the clique. For example, consider the ith doublet in image R consisting of nodes nR,a and

nR,b. This doublet is denoted as CR,i = {nR,a, nR,b} with k = 2. When describing any clique

in image α, the subscript is omitted and the set of nodes is simply written CR.

The unary, binary, trinary, and triplet transform metrics are respectively denoted as

µ, β, τ , and χ. A correspondence matrix constructed via metric m is denoted as Cm,

where m = µ, β, τ, or χ. The correspondence value calculated for nodes nR,i and nQ,j

is accessed from the correspondence matrix by Cm(nR,i, nQ,j) or simply Cm(i, j). Each

correspondence metric takes on values in the continuous interval [0, 1], with 0 signifying

perfect correspondence. The correspondence methods may be applied to any N > 1, but

results are presented for only 3D images in this dissertation.

3.2 UNARY CORRESPONDENCES

Identifying node correspondences begins with the unary metric by identifying similar singlets,

i.e., cliques that each consist of one node. Given that core atoms have been constructed and

clustered into medial nodes, the unary metric is calculated between each singlet (node) in

ΨR and each singlet in ΨQ. Note that since singlets consist of only one node, singlets are

sometimes referred to as nodes within this section. The unary metric quantifies the similarity

between a pair of singlets by their medial dimensionality and scale with a value of 0 indicating

perfect correspondence. For example, the unary metric evaluated for two singlets consisting
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of spherical (dimensionality) nodes of similar diameter (scale) yields a value close to 0 since

they are nearly identical. Recall that each medial node has N − 1 independent eigenvalues

λi for i = 1 . . . N − 1 that describe dimensionality, and an average diameter of the core atom

population that defines its scale σ.
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.  

Query Image
Node 1
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Figure 3.2: Framework for identifying singlet correspondences with the unary metric.

The steps for identifying corresponding singlets with the unary metric are shown in Fig.

3.2. The unary metric is calculated as the sum of a normalized dimensionality and normalized

scale term. For node j in image R, nR,j, and node k in image Q, nQ,k, the unary metric

µ(j, k) is defined as

µ(j, k) = aµω

N−1∑
i=1

(
λj,i − λk,i

)2
+ bµ

∣∣∣∣σj − σk

σj + σk

∣∣∣∣, (3.1)

where λj,i and λk,i are the ith eigenvalues for nodes nR,j and nQ,k, respectively, and σj and σk

are the respective scales of nR,j and nQ,k. Parameters aµ and bµ can be used in applications

where it may be beneficial to weight the dimensionality and scale terms differently. To

enforce 0 ≤ µ(j, k) ≤ 1, these weight parameters must satisfy aµ+bµ = 1. The normalization

constant ω is necessary for keeping µ(j, k) distributed between 0 and 1.

Recall that for N = 3, the lambda triangle is bound by λ1 = 1
3

and λ2 = 1
2
. Thus, the

maximum value for the dimensionality term
N−1∑
i=1

(
λj,i−λk,i

)2
occurs when the eigenvalues for
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node j are λj,1 = 1
3

and λj,2 = 1
2

and the eigenvalues for node k are 0 (or vice versa), i.e.,

N−1∑
i=1

(
λj,i − λk,i

)2
=

(1

3
− 0

)2
+

(1

2
− 0

)2 ≈ 0.36. (3.2)

Therefore, ω is calculated as

ω =
1

N−1∑
i=1

(
λj,i − λk,i

)2
=

1

0.36
≈ 2.77. (3.3)
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Figure 3.3: Unary correspondence matrix for organizing the unary correspondences between the
6 nodes from the reference image and 9 nodes from the query image. Origin (0, 0) is the lower-
left corner of the matrix. Unary correspondence values for nodes indexed at (3, 3) and (0, 8) are
indicated as Cµ(3, 3) and Cµ(0, 8), respectively.

The unary metric evaluated between all nodes in ΨR and ΨQ are organized in a unary

correspondence matrix, denoted as Cµ. The unary correspondence matrix is MR × MQ in

size, where MR and MQ are the numbers of medial nodes in ΨR and ΨQ, respectively. The

matrix is organized such that nodes from the reference image are along the matrix rows

and nodes from the query image are along the matrix columns. The unary correspondence

matrix therefore stores the correspondence value calculated by the unary metric for every

node in ΨR and ΨQ. The unary correspondence value between nR,j and node nQ,k from the

query image can be retrieved by indexing Cµ by (j, k). An example Cµ is illustrated in Fig.

3.3. From the diagram, it can be deduced that 6 nodes were extracted from the reference
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image and 9 nodes were extracted from the query image. The unary metric evaluated for

nodes nR,3 and nQ,3 is indicated as Cµ(3, 3), and the unary metric evaluated for nR,0 and

nQ,8 is indicated as Cµ(0, 8).

If the order and number of nodes in ΨR and ΨQ are the same, the unary correspondence

matrix, as well as other correspondence matrices, is symmetric about the diagonal, i.e.,

Cµ(j, k) = Cµ(k, j) since µ(j, k) = µ(k, j). Two medial nodes are said to correspond if

their unary correspondence value is within a pre-determined threshold µT , i.e., nodes j and

k correspond if Cµ(j, k) ≤ µT . The threshold on µ permits for flexibility in determining

correspondences and offsetting computational round-off error.

Since the unary metric determines correspondences only by dimensionality and scale, it is

expected that there will be a large number of false correspondences. Correspondences could

be improved by incorporating the orientation of the nodes into the metric. However, the

orientation of a node is within the reference frame of an image’s coordinate system, and since

it is not guaranteed that images will have the same orientation, an absolute coordinate system

would need to be established. As stated earlier, accurately aligning images without first

establishing correspondence is a difficult problem, so it is common in practice to manually

align images during pre-processing, but this would no longer be totally automatic. Instead of

taking this manual approach, orientation is incorporated into the correspondence framework

by means of the binary metric. Within the correspondence framework, no assumptions

of image coordinate systems are made, allowing for the development of metrics that are

invariant to image orientation.

3.3 BINARY CORRESPONDENCES

A doublet is a clique that consists of two medial nodes from the same image. Doublets are

restricted to only include nodes that have a correspondence in the other image as deter-

mined by thresholding the evaluated unary metric. Correspondences between doublets are

determined with the binary metric, which is the second metric in the hierarchy of similarity

metrics, as illustrated in Fig. 3.1. Since doublets are formed from nodes with unary cor-
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respondences, the binary metric inherently encapsulates similarities in dimensionality and

scale. More notably, the binary metric has been formulated to identify similar doublets

based on particular geometric properties, namely orientation and distance between the two

nodes in the doublet. Doublet orientation describes the relationship between a node’s local

coordinate system in relation to the other node’s coordinate system by producing a unique

doublet signature. For each doublet, two such doublet signatures are produced, one from the

perspective of each node. Doublet distance is calculated as the Euclidean distance between

the constituent of nodes in the doublet. Shown in 3.4 is the process for determining doublet

correspondences.
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Figure 3.4: Identifying corresponding doublets with the binary metric.

3.3.1 The Doublet Signature

Consider the ith doublet in image α consisting of two nodes nα,j and nα,k. This doublet is

denoted as Cα,i = {nR,j, nR,k}. For the purpose of defining the doublet signature, notation

will be simplified such that nα,j and nα,k will be referred to as node 1 and node 2, respectively.

The doublet signature is now derived from the perspective of node 1. The signature from

the perspective of node 2 can be computed with the same equations by interchanging the

node 1 variables for node 2 variables. The displacement vector from node 1 with image

coordinate p1 to node 2 with image coordinate p2 is defined as

v = p2 − p1. (3.4)
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Given the eigenvectors âi for i = 1, 2, ...N of node 1, the relative location of node 2 can be

expressed in the coordinate system of node 1 as

di =
N∑

j=1

vj(âi)j for i = 1, 2, ...N, (3.5)

where (âi)j is the jth component of the itheigenvector. It is further defined that d̂ is the

normalized vector

d̂ =
d

‖d‖
, (3.6)

which expresses the direction to node 2 from node 1 in the coordinate system defined by the

eigenvectors of node 1. The square of the normalized component (d̂i)
2 is referred to as the

ith Normalized Component Squared (NCS) of d.

The signature for node 1 is defined as the cumulative NCS for all i as a function of

λ. Each component of the NCS along a given eigenvector âi is added at its corresponding

eigenvalue,

s(λ) =
N∑

i=1

(
d̂i

)2
u(λ), (3.7)

where u(λ) is the unit step function. Since eigenvalues are always positive, s(λ) = 0 for

λ < 0. In effect, s(λ) is a series of steps. Each step is located at an eigenvalue with a height

equal to the corresponding NCS.

A metric to express the similarity between doublets should ignore symmetry in node 1 in

terms of the location of node 2. Such symmetry results only when two of node 1’s eigenvalues

are approximately equal. If two or more eigenvalues are equal, their steps superimpose into

a single NCS in the degenerate subspace defined by the corresponding eigenvectors. By the

Pythagorean Theorem, the total step size in such a case is independent of arbitrary rotation

within the degenerate subspace and the total of all the steps is 1. A proof is provided in

Appendix A to show that the signature is invariant to symmetry in the degenerate subspace

of a node.

Typical signatures, from the perspective of node 1, are shown in Fig. 3.5 for doublets

with an almost perfectly cylindrical node 1 (recall that λ1 = 0, λ2 = 0.5, and λ3 = 0.5

for a perfectly cylindrical node). Such signatures could hypothetically have been computed
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from the doublet illustrated in Fig. 3.6, which shows a cylindrical node 1 paired with a

cylindrical node 2 at the “equator” of node 1’s coordinate system. Comparing the two

signatures for the doublet in Fig. 3.5 there is an arbitrary rotation of node 1’s eigenvectors

within the degenerate subspace. Referring back to Fig. 3.6, this arbitrary rotation can be

conceptualized as rotation around the â1 axis of the node 1 cylinder. The doublets have

similar signatures, which only vary along a short segment of the λ-axis. The first NCS for

these signatures is 0 since its corresponding eigenvector is orthogonal to v.

a. b.

λ

s(λ)

0.5 1.0

1.0

λ

s(λ)

0.5 1.0

1.0

Figure 3.5: a) Signature of a cylindrical node 1 paired with node 2 at the “equator” of node 1’s
coordinate system. b) Another doublet with an “equatorial” node 2, but a different orientation of
node 1’s eigenvectors within the degenerate subspace.

In Figure 3.7, signatures from the perspective of node 1 are shown with the same cylin-

drical node 1 as before and a cylindrical node 2 located not at the equator, but at 45◦

“latitude” in node 1’s coordinate system. The signature is shifted above the λ-axis at a

value of v · â1 since the first eigenvector is no longer orthogonal to v. The minor difference

in step sizes at λ = 1
2

is still a result of rotation within node 1’s degenerate subspace, which

can be conceptualized as rotation around the â1 axis of the node 1 cylinder in Fig. 3.8.
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Figure 3.6: Cylindrical node 1 paired with cylindrical node 2 at the “equator” of node 1’s co-
ordinate system. Rotation within node 1’s degenerate subspace can be conceptualized as rotation
around the â1 axis of node 1.
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Figure 3.7: a) Signature (from node 1’s point of view) of cylindrical node 1 paired with node 2
at 45◦ “latitude” of node 1’s coordinate system, as shown in Fig. 3.8. b) Another doublet with
node 2 at the 45◦ “latitude” of node 1’s coordinate system, but with an arbitrary rotation of node
1’s eigenvectors within the degenerate subspace.
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Figure 3.8: Cylindrical node 1 paired with cylindrical node 2 at 45◦ “latitude” of node 1’s coor-
dinate system.
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3.3.2 The Binary Metric

The binary metric operates by comparing doublet signatures. Within an image, two sig-

natures are computed for each doublet, one signature from the perspective of each node.

For these four signatures, only two signature comparisons are necessary since node corre-

spondences within the doublet are known from the unary metric. As part of the binary

metric, signature metrics are calculated for signatures between doublets as the integral of

the absolute signature differences, i.e., signatures from images R and Q are subtracted, and

the average absolute difference is calculated. For identical signatures, the signature metric

evaluates to 0.

Consider a doublet in image R consisting of nodes nR,1 and nR,2. The signature of this

doublet from the perspective of node nR,1 is denoted as s(λ)R,1,2 and the signature of this

doublet from the perspective of nR,2 is denoted as s(λ)R,2,1. Following the same notation

for image Q, a doublet in image Q consists of nodes nQ,1 and nQ,2 with signatures s(λ)Q,1,2

and s(λ)Q,2,1. It is known that according to the unary metric nR,1 and nQ,1 correspond, and

nR,2 and nQ,2 correspond. Therefore, the signature metric evaluated for signatures from the

perspective of node 1 to node 2 is defined as

S1,2 =

∫ 1

0

|s(λ)R,1,2 − s(λ)Q,1,2|dλ (3.8)

and the signature metric evaluated for signatures from the perspective of node 2 to node 1

is defined as

S2,1 =

∫ 1

0

|s(λ)R,2,1 − s(λ)Q,2,1|dλ, (3.9)

where 0 ≤ S ≤ 1 and a value of 0 indicates identical signatures. In the special case that

singlet correspondences are ambiguous, the signature metrics must be also calculated between

s(λ)R,1,2 and s(λ)Q,2,1, and between s(λ)R,2,1 and s(λ)Q,1,2. Shown in Fig. 3.9 are two

superimposed signatures illustrating the signature metric from node 1’s perspective. The

gray region is the difference in signatures, the area of which is equal to S1,2.

The integrals in Equations 3.8 and 3.9 can be computed efficiently as the area of a

series of rectangles by sorting the union of the two sets of eigenvalues from least to greatest
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Figure 3.9: Two superimposed signatures illustrating the signature metric from node 1’s perspec-
tive. A signature from image R, s(λ)R,1,2, is shown as a solid line with a signature from image Q,
s(λ)Q,1,2, as a dashed line. The gray region is their difference, the area of which is equal to S(1, 2).

and assigning a new index from 0 ≤ k < 2N to each eigenvalue. The signature metric is

calculated from the set of 2N eigenvalues by

S =
2N∑
k=1

κ
(
d̂k

)2
(λk − λk−1), (3.10)

where κ = 1 for eigenvalues from node 1 and κ = −1 for eigenvalues from node 2, and vice

versa for S(2, 1). The orientation term of the binary metric is calculated from the signature

metric as the average of the signature metrics,

βo =
S1,2 + S2,1

2
, (3.11)

where 0 ≤ βo ≤ 1.

The distance term of the binary metric is calculated as a normalized difference between

doublet distances. The doublet distance between nα,1 and nα,2 is calculated as the Euclidean

norm

dα,1,2 = ‖pα,1 − pα,2‖, (3.12)

where pα,1 is the spatial coordinate of nα,1 and pα,2 is the spatial coordinate of nα,2. Thus,

the distance term of the binary metric can be calculated for a pair of doublets in images R

and Q by

βd =

∣∣∣∣dR,1,2 − dQ,1,2

dR,1,2 + dQ,1,2

∣∣∣∣, (3.13)
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where 0 ≤ βd ≤ 1. The binary metric can now be defined as the weighted sum of Equations

3.11 and 3.13,

β = aββo + bββd = aβ

(
S1,2 + S2,1

2

)
+ bβ

∣∣∣∣dR,1,2 − dQ,1,2

dR,1,2 + dQ,1,2

∣∣∣∣, (3.14)

where aβ and bβ are weight parameters that must satisfy aβ + bβ = 1, and 0 ≤ β ≤ 1.

In practice, computation times can be drastically reduced by using distance similarity as

a constraint prior to computing the signature metrics. In this case, if |dR,1,2 − dQ,1,2| ≤ dT ,

where an allowable tolerance dT is not satisfied, then the doublets are no longer considered

for binary correspondence and signatures are not even computed. Computation times are

also reduced by using data structures specifically designed to manage the combinatorial

complexity of searching for potentially corresponding cliques. These data structures are

further discussed in Appendix B.
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Figure 3.10: Binary correspondence matrix for organizing the binary correspondences between
the 6 nodes from the reference image and 9 nodes from the query image. Shown in orange at
Cβ(0, 8) and Cβ(3, 3) is the binary metric evaluated between doublets CR = {nR,0, nR,3} and
CQ = {nQ,3, nQ,8}.

The binary metric evaluations for all doublets in images R and Q are organized in a

binary correspondence matrix that is denoted as Cβ. The binary correspondence matrix is

of the same size as the unary matrix, and organized in the same manner with nodes from

the reference image along the rows and nodes from the query image along the columns.
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Correspondences values are stored differently for doublets however. Consider a doublet in

the reference image consisting of nodes nR,a and nR,b and a doublet in the query image

consisting of nodes nQ,i and nQ,j. By the unary metric, node nR,a corresponds to nQ,i and

node nR,b corresponds to nQ,j. The binary metric evaluated for these doublets is stored at

indices (a, i) and (b, j) of the matrix. An example of a binary correspondence matrix is

shown in Fig. 3.10. The binary metric evaluated between doublets CR = {nR,0, nR,3} and

CQ = {nQ,3, nQ,8} is highlighted in orange at Cβ(0, 8) and Cβ(3, 3).

It is possible that a number of nodes will comprise multiple doublets and therefore

multiple results from the binary metric may need to be accumulated at certain nodes in Cβ.

After the binary metric has been evaluated for all inter-image pairs of doublets, the binary

matrix is normalized by the largest accumulated value in the matrix keeping values in the

range [0, 1]. Thus, the binary correspondence stores the similarity between every node in

ΨR and ΨQ. Nodes are said to correspond if their binary correspondence value is within

a pre-determined threshold βT , i.e., nodes a and i correspond if Cβ(a, i) ≤ βT . Similar to

the threshold for the unary metric, the threshold on β permits for flexibility in determining

correspondences.
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3.4 TRINARY CORRESPONDENCES

Correspondences between medial node triplets are introduced to improve specificity over

doublet correspondences by considering the geometric configuration between three medial

nodes in a clique. Greater specificity is expected since a collection of 3 nodes in 3D image

space accounts for more degrees of freedom than 2 nodes in 3D image space. Even forgetting,

for the moment, the orientation of the individual nodal eigensystems and treating each node

simply as a point location, the degrees of freedom in terms of the affine transform can be

analyzed to map a clique in one image to a clique in the other image. A 3D affine transform

has 9 independent degrees of freedom to account for translation, rotation, and anisotropic

scale. Doublets have 6 degrees of freedom: 3 translations, 2 rotations, and 1 scale. Triplets

have 8 degrees of freedom: 3 translations, 3 rotations, and 2 scales. A method to account for

the remaining degree of freedom (scale orthogonal to the plane of the triplet) is the subject

of Chapter 4.
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Doublets

Figure 3.11: Identifying corresponding triplets from corresponding doublets with the trinary
metric. Note that corresponding doublets do not necessarily have the same identification number.

An overview for determining triplet correspondences is diagramed in Fig. 3.11. As

previously stated, a triplet is a clique consisting of three medial nodes, as shown in Fig.

3.12. Each vertex of a triplet is a medial node, where nα,j denotes the jth node of the triplet

in image α. Similar to doublets, triplets are formed from a pair of cliques that consist of nodes

with correspondences in the other image. This is illustrated in Fig. 3.12. For a reference

image triplet, nodes nR,1 and nR,2 make-up a doublet, and the corresponding doublet in the
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query image triplet consists of nodes nQ,1 and nQ,2. Nodes nR,1 and nR,3 make-up the other

doublet in the reference image triplet with its corresponding doublet in the query image

consisting of nodes nQ,1 and nQ,3. Also note that the doublets comprising a triplet share a

base node, i.e., nR,1 and nQ,1 for the triplets in the reference and query images, respectively.

Within a triplet, “twist” of the third “implied” doublet is accounted for by calculating the

binary metric between the first two doublets, e.g. between, nR,2 and nR,3 and nQ,2 and nQ,3

in Fig. 3.12.

The triplet angle is defined as the angle between the first two doublets, denoted as θα.

The triplet length is defined as the Euclidean norm between the non-base nodes, e.g., the

length of the third, implied doublet, and is denoted as Lα.

Reference Image Query Image

nR,1

nR,2

nR,3

LR

θR

nQ,1
nQ,3

nQ,2

θQ

LQ

Figure 3.12: Triplets from the reference and query images are shown. Each vertex is a medial
node, where nα,j denotes the jth node of the triplet in image α. For clarity, corresponding nodes
have the same subscript of j. A triplet can be defined by two doublets (solid lines) that share a
base node with the third “implied” doublet (dashed line). The triplet angle is θα and the triplet
distance is Lα as defined relative to the base node and the third “implied” doublet.

Triplet correspondences are implied when the triplets share similar geometry. For exam-

ple, in Fig. 3.12, suppose doublets (nR,1, nR,2) and (nR,1, nR,3) make-up a triplet in image

R and doublets (nQ,1, nQ,2) and (nQ1, nQ,3) make-up a triplet in image Q. These two triplets

correspond if the triplet angles are similar, since constituent doublets were already shown to

correspond. Correspondences between triplets is quantifiable by the trinary metric, which is

defined for angles θR and θQ as

τθ =

∣∣∣∣θR − θQ

θR + θQ

∣∣∣∣. (3.15)
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Alternatively, distances LR and LQ may be used since angle calculations may be computa-

tionally difficult. Triplet distance is also more sensitive to differences in doublet distance,

whereas angle is independent of doublet distances, i.e., if the doublet distances are changed

for two identical triplets, the triplet lengths will differ yet the angles will remain the same.

The trinary metric is defined for lengths LR and LQ as

τL =

∣∣∣∣LR − LQ

LR + LQ

∣∣∣∣. (3.16)

As with the unary and binary metrics, both forms of the trinary metric evaluate to a value

between 0 and 1, where 0 indicates a perfect correspondence. Results reporting triplet

correspondences in this dissertation made use of the trinary metric defined in Eq. 3.16 for

reasons of computational stability.
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Figure 3.13: Trinary correspondence matrix for organizing the trinary correspondences between
the 6 nodes from the reference image and 9 nodes from the query image. The trinary metric
evaluated for a triplet consisting of nodes (3, 3), (0, 8), and (1, 2) is highlighted in purple.

Evaluations using the trinary metric for all triplets in images R and Q are organized

in a trinary correspondence matrix, denoted as Cτ . The trinary correspondence matrix is

the same size as the unary and binary matrices, and organized in the same manner. An

example trinary correspondence matrix is shown in Fig. 3.13 with two triplets: one from

image R and one from image Q. The triplet in image R consists of doublets (nR,0, nR,1)

and (nR,0, nR,3), where nR,0 is the base node. The triplet in image Q consists of doublets
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(nQ,8, nQ,2) and (nQ,8, nQ,3), where nQ,8 is the base node. By means of the binary metric,

(nR,0, nR,1) corresponds to (nQ,8, nQ,2), and (nR,0, nR,1) corresponds to (nQ,3, nQ,3). The tri-

nary metric evaluated for these two triplets is stored at indices (1, 2), (3, 3), and (0, 8) of

Cτ .

Similar to the binary correspondence matrix, the similarity between every node in ΨR

and ΨQ is stored by accumulating trinary metric values in Cτ , and normalizing them by the

largest accumulated value in the matrix, which keeps values in the range [0, 1].

Threshold τT is used when computing triplet correspondences to allow for flexibility in

determining triplet correspondences. Triplets are said to correspond if τ < τT , where τT is

a threshold. Individual nodes correspond if their values in the correspondence matrix are

within threshold τT , i.e., nodes a and i correspond if Cτ (a, i) ≤ τT .
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3.5 MEASURING CORRESPONDENCE SENSITIVITY AND

SPECIFICITY

A Receiver Operating Characteristic (ROC) curve assesses the ability of a test to discriminate

between correct and incorrect results, delineating the trade-off for a chosen test parameter

[99, 100, 101]. The methodology of ROC curve analysis was developed in 1954 by Tanner, et

al. [102] to measure the detectability of airplanes by radar. In 1968, Lusted saw the utility

in ROC curves and used them to study medical decision making and the efficacy of medical

imaging devices [103, 104].

In this dissertation, ROC curves are analyzed to evaluate the accuracy of each corre-

spondence metric in determining correct medial correspondences. For the remainder of this

chapter, ROC curve analysis will be presented in the context of testing the correspondence

metrics. Consider medial nodes extracted from two images with the objective of identifying

corresponding medial nodes. A correspondence test is performed with a specified metric.

The test, as described above, has a binary outcome based on a threshold applied to the met-

ric. A positive test indicates that the nodes likely correspond, and a negative test indicates

that the nodes likely do not correspond. The test is repeated with a change in parameter

setting, namely the metric threshold. All test results are then compared to a ground-truth

for correct correspondences, and an ROC curve is generated and analyzed.

The ground-truth for node correspondence is established by using two identical images,

so that nodes that are known to correspond will have identical image coordinates. For this

section, notation is simplified from previous sections. A node in the reference and query

images is denoted simply as a and i, as opposed to nR,a and nQ,i, respectively. The ground-

truth correspondence between two given nodes a and i is defined as

Da,i =

(
ka,i

kmax

)φD

, (3.17)

where ka,i is the Euclidean distance between the locations of nodes a and i, as if their

coordinates were projected into the same image space, kmax is the maximum ka,i computed

between the sets of nodes, and φD is a parameter for controlling the effective threshold
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between correct and incorrect correspondences. The ground-truth is always within the range

[0, 1], where 0 implies perfect correspondence.

Table 3.1: All possible classifications for ROC analysis of node correspondences. Positive/Negative
indicates correspondences as determined by test results and Correct/Incorrect indicates correspon-
dences known via the ground-truth.

Node Correspondence Classifications

Correct Incorrect

Positive True Positive False Positive

Negative False Negative True Negative

The ground-truth permits test results to be separated into one of four groups, as shown in

Table 3.1. As determined by the ground-truth, correspondence can be classified as correct or

incorrect, where Da,i = 0 indicates correct correspondence, and Da,i = 1 indicates incorrect

correspondence. Thresholds are established for the ground-truth (DT ) and correspondence

values (CT ) to classify the “correctness” of the correspondence test. Each test result is

classified as True Positive (TP), False Positive (FP), True Negative (TN), or False Negative

(FN). Each classification is defined as follows:

• True Positive: the ground-truth indicates a correct correspondence, and the correspon-

dence test is positive for correspondence.

• False Positive: the ground-truth indicates an incorrect correspondence, but the corre-

spondence test is positive for correspondence.

• True Negative: the ground-truth indicates an incorrect correspondence, and the cor-

respondence test is negative for correspondence.

• False Negative: the ground-truth indicates a correct correspondence, but the corre-

spondence test is negative for correspondence.
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Figure 3.14: Scatter plot of correspondence values vs. ground-truth. Also shown are the test
classifications (circled) and thresholds for classifying the test results.

A scatter plot of correspondence values versus ground-truth is shown in Fig. 3.14. Ap-

plying the thresholds on correspondence values and ground-truth will partition the plot into

the 4 possible test classifications.

An ROC curve is generated by calculating the true positive fraction (TPF) versus false

positive fraction (FPF) over a range of values for CT . The TPF is a measure of the test’s

sensitivity in detecting true positives, i.e., in calling a correct case positive. The TPF is

calculated as the ratio of true positives to total correct classifications:

TPF = Sensitivity =
NTP

NFN + NTP

, (3.18)

where NTP is the number of true positives and NFN is the number of false negatives. If

TPF = 1, the correspondences test achieves 100% sensitivity since all test results were true
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positive and none were false negative. Specificity is the probability of classifying an incorrect

case negative, i.e.,

Specificity =
NTN

NTN + NFP

, (3.19)

where NTN is the number of true negatives and NFP is the number of false positives.

The false positive fraction is simply one minus the specificity or the ratio of false positives

to total incorrect classifications:

FPF = 1− Specificity =
NFP

NTN + NFP

. (3.20)

If FPF = 0, the correspondences test achieves 100% specificity since all test results were

true negative and none were false positive.
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Figure 3.15: Theoretical ROC curves for the medial correspondence metrics. The dashed 45◦ line
indicates a test that involves random guessing.

Plotting TPF vs. FPF for a number of trials with varying values for CT results in an

ROC curve. Three ROC curves are shown together in Fig. 3.15 illustrating theoretical

expectations for the three different correspondence metrics. It is expected that the unary

metric will be somewhat more accurate than randomly guessing (just above the 45◦ line)

while the trinary metric will be the most accurate correspondence test, approaching vertical

on the left and horizontal on the top. The binary metric is expected to perform somewhere

in between the unary and trinary metrics.
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Figure 3.16: Theoretical histograms for the unary and binary correspondence metrics. Left shows
a histogram of unary correspondence values and right shows histogram of binary correspondence
values. The increase in curve separation a, for the binary metric indicates increased correspondence
specificity.

Theoretical histograms, created by binning True Negatives and True Positives, are shown

in Fig. 3.16 for the unary and binary metrics. Peak separation distance and curve width

are indicative of a metric test’s specificity. An increase in separation distance and decrease

in peak width results in a reduction in the number of false negatives and false positives,

thereby increasing specificity. As shown in Fig. 3.16, the separation distance for the binary

test is expected to be larger than the separation distance for the unary test.
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Figure 3.17: Computing the area under the ROC curve with trapezoidal rule. The area of each
trapezoidal region is summed for the approximated area under the ROC curve.

A measure of accuracy that encompasses both sensitivity and specificity can be quantified

by calculating the area under the ROC curve, AROC . The area under the ROC curve makes

no assumptions about the underlying distribution of the underlying histograms, e.g., Fig.

3.16. The AROC for randomly guessing whether a correct correspondence exists is 0.5 and the

AROC for a test that is always correct is 1.0. There are many parametric and non-parametric

techniques for estimating AROC . The trapezoidal rule is used in this dissertation to estimate

AROC , as illustrated in Fig. 3.17 and described below.

Let f(x) represent the ROC curve. The ROC curve evaluated at a series of s points xi is

denoted as f(xi). Trapezoids of width wi = xi+1 − xi are thus formed along the ROC curve

such that a chord connects the points (xi, f(xi)) and (xi+1, f(xi+1)). The more trapezoids

that are utilized the more accurately AROC can be approximated as the sum of all trapezoid

areas,

AROC ≈
s−1∑
i=0

xi+1 − xi

2
(fxi

+ fxi+1
). (3.21)
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3.6 EMPIRICAL RESULTS

In these following sections, experimental results are presented for several 3D computer gener-

ated data sets to demonstrate 1) the framework for automatically determining feature-based

correspondences and 2) correspondence accuracy via ROC curve analysis.

The voxel intensity of the test images used were all 8-bit with a dynamic range of 0 - 255.

The first data set consisted of two concentric ellipsoids of various orientations. A sample

of various images from this data set is shown in Fig. 3.18. Two concentric ellipsoids were

chosen to yield a population of nodes differing in dimensionality and scale. It was expected

that cylindrical nodes would be extracted from the inner ellipsoid and slab-like nodes would

be extracted from the “shell” between the ellipsoids. Each image from this data set was

100× 100× 100 voxels in size with origin (0, 0, 0) and center (50, 50, 50). The orientation

of each ellipsoid is with respect to the image coordinate system (shown in Fig. 3.18). The

inner ellipsoid axes were 25, 50, and 15 voxels in length along the x-axis, y-axis, and z-axis,

respectively. The outer ellipsoid axes were 45, 70, and 35 voxels in length along the x-axis,

y-axis, and z-axis, respectively. The space between the ellipsoids constitute a 20 voxel-wide

“shell.” Voxels within the inner ellipsoid had an intensity of 255 and voxels within the shell

had an intensity of 128. Voxels outside both ellipsoids had an intensity of 0.

The second data set consisted of images obtained from a Simulated Brain Database (SBD)

called BrainWeb. BrainWeb images are generated using the MRI simulator developed at the

McConnell Brain Imaging Centre at the Montréal Neurological Institute. From a webpage

interface, the MRI simulator allows users to control various acquisition parameters, and

to realistically model noise from the data acquisition and image reconstruction processes

[105, 106, 107, 108]. Several cross-sections of an image obtained from BrainWeb are shown

in Fig. 3.19.
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Figure 3.18: Cross-sections of various images containing two concentric ellipsoids. The image
coordinate system is shown between a and b. a). Two concentric ellipsoids centered in the image.
b). Two concentric ellipsoids centered in the image and translated along the x-axis. c). Concentric
ellipsoids centered in the image and rotated by 90◦ about the z-axis.

Figure 3.19: a). Sagittal, b). coronal, and c). transverse cross-sections of a 3D image obtained
from the BrainWeb database.
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Figure 3.20: The lambda triangle with eigenvalue thresholds defined. The eigenvalues in the box
describe the perfect sphere, cylinder, and slab, i.e., the vertices of the lambda triangle.

A medial node is visualized as one or more lines orientated in the predominate direction(s)

of the corresponding eigenvector(s). A spherical node is visualized as 3 intersecting lines, a

cylindrical node as 2 intersecting lines, and a slab-like node as 1 line. The length of the lines

are equal to the node’s scale. The color of a medial node is determined from the lambda

triangle that was briefly described in Section 2.3.2. For the results presented in the remainder

of this dissertation, thresholds on λ1 and λ2 were set to γ1 = 1
5

and γ2 = 1
4
, respectively. As

shown in Fig. 3.20, these thresholds divide the lambda triangle into 3 regions. Each region

designates dimensionality and color as follows:

• When 1
5

< λ1 ≤ 1
3

for all λ2, the medial node is classified as spherical and displayed in

blue.

• When 0 ≤ λ1 ≤ 1
5

and 1
4

< λ2 ≤ 1
2
, the medial node is classified as cylindrical and

displayed in green.

• When 0 ≤ λ1 ≤ 1
5

and 0 ≤ λ2 ≤ 1
4
, the medial node is classified as slab-like and displayed

in red.

Since the lambda triangle bounds all possible eigenvalues, any medial node is assigned

to one of the three colors.
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3.6.1 Automated Feature-Based Correspondences

3.6.1.1 Identical Synthetic Images For this first experiment, the concentric ellipsoids

image shown in Fig 3.18a was used for both the reference and query images. Medial nodes

were extracted from each image with the same core atom parameter settings to ensure

identical sets of nodes. These parameter settings are shown in Table 3.2. Given identical

core atom parameters and images, nodes from each image are stored in their respective lists in

the same order, which allows correspondences to be known based on the position of the nodes

in the lists, i.e., nR,i corresponds to nQ,j for i = j. Consequently, known correspondences

will be on the diagonal of a given correspondence matrix. Qualitative observation of the

correspondence matrix diagonal is the basis of validation for this preliminary experiment.

The remainder of this chapter presents 1) preliminary results to demonstrate global rotational

and translational invariance of the correspondence methods, and 2) the results of ROC curve

analysis for simulated MRI brain images.

Table 3.2: Parameter settings used to extract medial nodes from images containing concentric
ellipsoids.

Parameter Description Value

Blur Repetitions Number of applications of a 2× 2 bino-

mial kernel

2

Boundary Point Threshold Intensity threshold for determining

boundary points

32

Distance Minimum Minimum search distance for finding op-

posing boundary point

10

Distance Maximum Maximum search distance for finding

opposing boundary point

40

Face-to-Faceness Tolerance Allowable tolerance 0.10

Polarity Direction to search for opposing bound-

ary point

0 (direction of

the gradient)
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A total of 42 medial nodes were extracted from each of the reference and query images.

The set of nodes is shown with the image in Fig. 3.21. As expected, cylindrical nodes

were found within the inner ellipsoid and slab-like nodes were found within the shell. Note

that the viewpoint was rotated to provide clarity for observing the medial nodes. The green

intersecting lines indicate cylindrical nodes from the inner ellipsoid, and the red lines indicate

slab-like nodes from the shell.

Figure 3.21: a). An image consisting of two concentric ellipsoids centered at the image origin.
Note that voxel intensities are uniform as described in the text, but are displayed here with a
shadowing effect for clarity. b). The set of extracted medial nodes. Green intersecting lines
indicate cylindrical nodes from the inner ellipsoid and red lines indicate slab-like nodes from the
shell between the ellipsoids.

Singlet correspondences were calculated via the unary metric using a threshold of µT =

0.10. An example of unary correspondences is shown in Fig. 3.22. In Fig. 3.22a, slab-like

node nR,9 is selected and the corresponding nodes are highlighted in Fig. 3.22b. The correct

node correspondence is labeled nQ,9. In Fig. 3.22c, cylindrical node nR,24 is selected and

the corresponding nodes are highlighted in Fig. 3.22d. The correct node correspondence is

labeled nQ,24. By qualitative assessment, multiple nodes of similar dimensionality and scale

are highlighted, including the actual correct correspondence.

The unary correspondence matrix is shown in Fig. 3.23. White indicates a perfect unary

correspondence value of 0, and white values off-diagonal indicate incorrect correspondences.
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Correct correspondences for the selected nodes in Figs. 3.22a and 3.22c are highlighted by red

boxes along the matrix diagonal (thin, red dashed-line), i.e., the nodes indexed by Cµ(9, 9)

is the correct correspondence for the slab-like node, and nodes indexed by Cµ(24, 24) is the

correct correspondence for the cylindrical node. The highlighted correspondences in Figs.

3.22b and 3.22d can be seen in the correspondence matrix by observing the row of a selected

node. The values in this row that are above the correspondence threshold have sufficient

correspondence and are highlighted in the query image. For example, the row labeled nR9 ,

defined as Cµ(9, k), contains the unary metric evaluated between nR9 for all k nodes in the

query image. For each node in the query image, if Cµ(9, k) ≤ 0.10, node k is highlighted

in Fig. 3.22b. Likewise, the same can be observed in the unary correspondence matrix for

node nR24 and its highlighted correspondences shown in Fig. 3.22d.
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Figure 3.22: Example of unary correspondences between nodes extracted from identical images
containing two concentric ellipsoids. a). A slab-like node in the shell of the reference image
is selected (yellow) and the corresponding nodes in the query image are highlighted in b. c).
A cylindrical node within the inner ellipsoid of the reference image is selected (yellow) and the
corresponding nodes in the query image are highlighted (yellow) in d).
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Figure 3.23: Unary correspondence matrix calculated from identical images containing two con-
centric ellipsoids. White indicates perfect correspondence and nodes along the diagonal dashed-line
are known correspondences. The red squares are the known correspondences for the selected nodes
shown in Figs. 3.22a. and 3.22c.
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Figure 3.24: Three examples of binary correspondences between doublets extracted from identical
images containing two concentric ellipsoids. a). A doublet consisting of a cylindrical and slab-like
node is selected (orange) in the reference image. b). The correctly corresponding doublet is
highlighted (orange). Two incorrect correspondences are highlighted (orange) in c. and d.

Doublet correspondences were determined from corresponding singlets via the binary

metric with βT = 0.10. A doublet consisting of the same nodes previously described for the

unary metric is shown in Fig. 3.24a and its corresponding doublet is shown in Fig. 3.24b.

The binary correspondence matrix is shown in Fig. 3.25. Note how correspondence values off

the diagonal are lower as compared to the unary correspondence matrix, signifying greater

specificity (fewer false positives). The reference image doublet (nR,9, nR,24) and its corre-

sponding doublet (nQ,9, nQ,24) are highlighted by the orange line labeled a-b. Individually,

nodes nR,9 and nQ,9 appear to correspond, and nodes nQ,24 and nQ,24 appear to correspond
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since their correspondence values are fairly white. Since these pairs of nodes are on the

matrix diagonal and have the same index, they do indeed correspond.
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Figure 3.25: Binary correspondence matrix calculated from identical images containing two con-
centric ellipsoids. Red squares connected by an orange line indicate the pair of doublets from Fig.
3.24.

Shown in Figs. 3.24c and 3.24d are examples of incorrect correspondences (false posi-

tives). It is clear that these correspondences are incorrect by observing the location of the

cylindrical nodes relative to each other. However, since the doublet distance and the doublet

orientation appear to be similar, the doublets satisfy the binary correspondence criteria.

These incorrect correspondences can be observed in the binary correspondence matrix (Fig.

3.25). The pair of doublets shown in Figs. 3.24a and 3.24c is connected by the orange line

labeled a-c. The slab-like nodes nR,9 and nQ,9 are on the matrix diagonal, but the cylindrical

nodes nR,24 and nQ,36 are off-diagonal. Since the correspondence values for the cylindrical

nodes are “more gray than white,” they could be overlooked when considering individual

node correspondences by using a proper threshold. For the example shown in Fig. 3.24d,

the pair of doublets is connected by the orange line labeled a-d in the binary correspondence

matrix. In this case, the cylindrical nodes nR,24 and nQ,24 are on the matrix diagonal, but the

slab-like nodes nR,9 and nQ,31 are off-diagonal. Again, a proper threshold could distinguish

between true positives on the diagonal and these false positives, but greater specificity can
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be achieved by using the trinary metric, described below. It is the goal of the trinary metric

to remove these incorrect correspondences by incorporating more geometric information into

the clique.

Figure 3.26: Two examples of trinary correspondences between triplets extracted from identical
images containing concentric ellipsoids. a). A selected triplet (purple) consisting of 2 slab-like
nodes and a cylindrical node. b). The correctly corresponding triplet is highlighted (purple). c).
A selected triplet (purple) consisting of 2 slab-like nodes and a cylindrical node. d). An incorrectly
corresponding triplet is highlighted (purple).

Triplet correspondences were calculated via the trinary metric with τT = 0.10. In Fig.

3.26a, a triplet consisting of 2 slab-like nodes and 1 cylindrical node is selected and the

correctly corresponding triplet is highlighted in Fig. 3.26b. This correspondence is shown in

the trinary correspondence matrix (Fig. 3.27) as 3 red squares connected by the purple line
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labeled “a-b.” All 3 nodes are on the diagonal and the indices of the individual nodes are

the same and therefore it is known that this is a correct correspondence. An incorrect triplet

correspondence is shown in Figs. 3.27c and Fig. 3.27d. Geometrically, the triplets appear

similar, but clearly do not correspond based on their spatial location in the image. Incorrect

correspondences can be further verified by the triplet correspondence matrix in Fig. 3.27.

The incorrect triplet correspondence illustrated in Figs. 3.27c and Fig. 3.27d is shown as red
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Figure 3.27: Trinary correspondence matrix calculated from identical images containing two
concentric ellipsoids. Red squares connected by a purple line indicates the trinary metric evaluated
between a pair of triplets from Fig. 3.26.

squares connected by the purple line labeled “c-d.” Note that none of the nodes are on the

matrix diagonal. Moreover, the correspondence values are very high as indicated by the very

dark red squares. Each of the correspondence matrices are shown side-by-side in Fig. 3.28.

From left to right, are the unary, binary, and trinary correspondence matrices. With each

successive matrix, the high correspondence values off the diagonal decrease, which indicates

that incorrect correspondences are being eliminated and accuracy is being improved.
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Figure 3.28: Correspondence matrices calculated from the concentric ellipsoids data set. From
left to right, are the unary, binary, and trinary correspondence matrices. Note the decreasing
number of false correspondences as indicated by a decrease in correspondence values off the matrix
diagonal.
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3.6.1.2 Rotational and Translational Invariance The global rotational and trans-

lational invariance of the correspondence metrics is now demonstrated. Validation for this

experiment is purely qualitative. Quantitative validation of the correspondence metrics is

the subject of Chapter 7. For this experiment, the reference image consisted of two con-

centric ellipsoids centered in the image and rotated by 90◦ (Fig. 3.29a). The query image

consisted of two concentric ellipsoids centered in the image and translated along the x-axis by

13 voxels (Fig. 3.29b). Medial nodes were extracted using the same parameters as tabulated

above. The nodes extracted from the reference and query images are shown in Figs. 3.29c

and 3.29d, respectively. Due to discretization errors in medial node calculations (a result of

rotating and translating the images), the set of nodes differ despite identical ellipsoid and

core atom parameters. Example correspondences for selected nodes are shown in Fig. 3.30.

The “correctness” of the correspondences can be inferred by mentally rotating the reference

image nodes 90◦ clock-wise and recognizing that the selected nodes appear to superimpose

on the highlighted nodes. The effects of rotation and translation are now independently

investigated with greater detail.
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Figure 3.29: a). Reference image consisting of 2 concentric ellipsoids centered in the image and
rotated by 90◦. b). Query image consisting of 2 concentric ellipsoids centered in the image and
translated along the x-axis by 13 voxels. c). Medial nodes extracted from the reference image. d).
Medial nodes extracted from the query image.
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Figure 3.30: Correspondences determined for the reference and query images shown in Fig. 3.29.
a). A selected cylindrical node (yellow) in the reference image and b). its corresponding nodes. c).
A selected doublet (orange) consisting of a cylindrical and slab-like node, and its d). corresponding
doublet. e). A selected triplet (purple) consisting of a cylindrical node and 2 slab-like nodes, and
its f). corresponding triplet.
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Figure 3.31: a). The set of nodes extracted from the reference image. b). The set of nodes
extracted from the query image.

The rotational invariance of the correspondence framework was investigated further, as

follows. The reference image consisted of two concentric ellipsoids centered in the image,

and the query image consisted of two concentric ellipsoids centered in the image and rotated

90◦ about the z-axis. The same ellipsoid parameters described in the beginning of this chap-

ter were used, and these reference and query images are shown in Figs. 3.18a and 3.18c,

respectively. To establish ground-truth the set of query image nodes was rotated by 90◦

and compared to the location of the reference image nodes. A query node within the same

proximity (nearest node to within 10 voxels) of a reference node was chosen manually and

reordered to have the same corresponding index as the reference node. Unlike previous ex-

periments, the correspondence matrices would not have been expected to favor the diagonal

since the node lists were not identical. By reordering the query nodes, correct correspon-

dences could be expected to fall on the diagonal of a given correspondence matrix. Nodes

without correspondence were removed from the data set leaving a total of 31 nodes to be

examined. The sets of medial nodes for both images are shown in Fig. 3.31.

Singlet correspondences were calculated via the unary metric with µT = 0.10. In Fig.

3.32a, a slab-like node between the ellipsoids is selected (yellow) and the corresponding
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nodes are highlighted in Fig. 3.32b (yellow). In Fig. 3.32c, a cylindrical node within the

inner ellipsoid is selected (yellow) and the corresponding nodes are highlighted in 3.32d. As

expected, by qualitative assessment, multiple nodes of similar dimensionality and scale are

highlighted.

Figure 3.32: Two examples of unary correspondences between nodes extracted from images con-
taining two concentric ellipsoids, one of which is rotated. a). A slab-like node in the shell of
the reference image is selected (yellow) and b). the corresponding nodes in the query image are
highlighted. c). A cylindrical node within the inner ellipsoid of reference image is selected (yellow)
and d). the corresponding nodes in the query image are highlighted
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Figure 3.33: Unary correspondence matrix calculated from images containing two concentric el-
lipsoids, one of which is rotated. White indicates perfect correspondence. Nodes along the diagonal
dashed-line are known correspondences. The red squares indicate the correct correspondences for
the nodes selected in Figs. 3.32a. and 3.32c.
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The unary correspondence matrix is shown in Fig. 3.33. The selected node in Fig. 3.32a

is labeled as nR,29. The correspondence value at each element k in this row is equal to

the unary metric evaluated between node nR,29 and node k from the query image. White

indicates a perfect correspondence value of 0. The white off-diagonal elements indicate a

large number of incorrect correspondences. The highlighted nodes in Fig. 3.32b correspond

to those elements in the nR,29 row with Cµ(29, k) ≤ 0.10. The known correspondence for

node nR,29 is indicated as the red square along the matrix diagonal (thin, red dashed-line)

at (nR,29, nQ,29). Similarly, the selected cylindrical node in Fig 3.32c is labeled as nR,18 in

Fig. 3.33 with its known correspondence as the red square at (nR,18, nQ,18).
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Figure 3.34: Three examples of binary correspondences between doublets extracted from identical
images containing concentric ellipsoids. a). A doublet consisting of a cylindrical and slab-like node
is selected (orange) in the reference image. b). The correctly corresponding doublet to that in a is
highlighted (orange). c). and d). Two false correspondences to that in a are highlighted (orange).
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Figure 3.35: Binary correspondence matrix calculated from identical images containing two con-
centric ellipsoids. Red squares connected by an orange line indicates the binary metric evaluated
between a doublet from Fig. 3.34a and a doublet from the query image labeled with orange letters.
The letters corresponds to the panes in Fig. 3.34.

Doublet correspondences were calculated via the binary metric with βT = 0.10. A

selected doublet is shown in Fig. 3.34a and the corresponding doublet is shown in Fig.

3.34b. The binary correspondence matrix is shown in Fig. 3.35. Note that there are less low

correspondence values off the diagonal as compared to the unary correspondence matrix.

The reference image doublet (nR,18, nR,29) and its corresponding doublet (nQ,18, nQ,29) is

illustrated by the orange line labeled “a-b.” Individually, nodes nR,18 and nQ,18 correspond,

and nR,29 and nQ,29 correspond. Note that these node pairs are on the diagonal, which

indicates that they are indeed true correspondences.

A doublet consisting of a cylindrical and slab-like node is selected in Fig. 3.34a, and a

potentially corresponding doublet is highlighted in Fig. 3.34c. By observing the location

of the cylindrical nodes relative to each other, it is clear that this correspondence is incor-

rect. However, since the nodes within the doublets, the doublet distance, and the doublet

orientation were sufficiently similar, the doublet correspondence criteria was satisfied. This

incorrect correspondence can be observed in the correspondence matrix as the orange line

labeled “a-c”. The slab-like nodes nR,29 and nQ,29 are on the diagonal, but the cylindrical
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nodes nR,18 and nQ,23 are off-diagonal. Since the indices were reordered to maintain actual

correspondence, the differing indices for the cylindrical nodes also indicate incorrect corre-

spondence. Another example of an incorrect correspondence is shown in Fig. 3.34d. The pair

of doublets are labeled “a-d” in the binary correspondence matrix. The cylindrical nodes

nR,18 and nQ,18 are on the diagonal, but the slab-like nodes nR,29 and nQ,10 are off-diagonal.

Figure 3.36: Two examples of trinary correspondences between triplets extracted from identical
images containing concentric ellipsoids. a). A selected triplet (purple) in the reference image
consisting of 2 slab-like nodes and a cylindrical node. b). The correctly corresponding triplet in
the rotated query image is highlighted (purple). c). An incorrectly corresponding triplet (purple)
consisting of 2 slab-like nodes and a cylindrical node. d). Another incorrectly corresponding triplet
in the query image (purple).
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Figure 3.37: Trinary correspondence matrix calculated from identical images containing two
concentric ellipsoids. Red squares connected by a purple line indicate the trinary metric evaluated
between the triplet from the reference image in Fig. 3.26a and various triplets from the query image
as identified by “a-b”, “a-c”, and “a-d”, corresponding to the triplets in Figs. 3.26a, b and c.

Triplet correspondences were calculated via the trinary metric with τT = 0.10. Shown in

Fig. 3.36a is a selected triplet (purple) in the reference image consisting of 2 slab-like nodes

and 1 cylindrical node. A correctly corresponding triplet in the query image is highlighted in

Fig. 3.36b. This correspondence is shown in the trinary correspondence matrix (Fig. 3.37)

as 3 red squares connected by the purple line labeled “a-b.” Since all 3 nodes are on the

diagonal, the indices of the individual nodes are the same and thus it is known that this is

a correct correspondence. An incorrect triplet correspondence is shown in Figs. 3.36c and

3.36d. In terms of the dimensionality and scale of the individual nodes, the triplets appear

similar, but clearly do not correspond based on relative spatial configuration of the nodes

within each triplet. The fact that this particular triplet correspondence is incorrect is verified

by observing the triplet correspondence matrix in Fig. 3.37. The triplet correspondence is

shown as red squares connected by the purple line labeled “a-d.” Note that none of the nodes

are exactly on the matrix diagonal. Moreover, the correspondence values are very high as

highlighted by the red squares.
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Each of these “experimental” correspondence matrices are shown side-by-side in Fig.

3.38c. From left to right, are the unary, binary, and trinary correspondence matrices. With

each successive matrix, correspondence values off the diagonal decrease, indicating that

incorrect correspondences are being eliminated.

Shown in Figs. 3.38a and 3.38b are two sets of correspondence matrices computed for

comparison with the above results while introducing rotation. First, to establish “ideal”

correspondence matrices, both the reference and query images were rotated by 90◦ about

the z-axis. Therefore, if the correspondence metrics are truly independent of rotation, the

matrices shown in Fig. 3.38c should be identical to those computed for these images (Fig.

3.38a). Second, to establish a “theoretical” set of nodes that should be extracted from

the rotated query image, the reference nodes were manually rotated and used as the query

nodes. Correspondence matrices computed from this theoretical set of nodes are shown

in Fig. 3.38b. As expected, these matrices are nearly identical to those in Fig. 3.38a

since the relative geometric relationship between nodes is independent of global rotation.

However, in comparing the “experimental” and “theoretical” results, there is a noticeable

difference between the matrices. The differences between the matrices can be attributed

to sampling artifact when extracting medial nodes, notably deviations in node properties

and node location. The absolute difference in scale and dimensionality, and the magnitude

of location difference between the “theoretical” and “experimental” nodes are tabulated in

Table 3.3.
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Figure 3.38: Correspondence matrices calculated to demonstrate the effects of global image ro-
tation on the correspondence metrics. From left to right, are the unary, binary, and trinary cor-
respondence matrices. a). Calculated correspondence matrices when using the reference image as
the query image. b). Correspondence matrices calculated with query nodes rotated by 90◦ about
the z-axis. c). Correspondence matrices calculated with query nodes extracted from the rotated
concentric ellipsoids image.
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Figure 3.39: a.) Reference image containing two concentric ellipsoids centered in the image. b.)
Query image containing two concentric ellipsoids translated along the x-axis from the center of the
image. The set of nodes extracted from the c.) reference image and d.) query image.

The translational invariance of the correspondence method is now investigated. The

reference image consisted of two image-centered concentric ellipsoids. The query image

consisted of two concentric ellipsoids shifted along the x-axis by +10 voxels. The same

ellipsoid parameters described in the beginning of this chapter were used. These reference

and query images are shown in Figs. 3.18a and 3.18b, respectively. Similar to the previous

experiment with rotation, ground-truth was determined by manually shifting the nodes by

+10 voxels, comparing them to the reference image nodes, and reordering them in the query

node list to have the same index as the corresponding nodes in the reference image. Nodes

without a correspondence were removed from the node lists leaving a total of 24 nodes to be

examined. The sets of medial nodes extracted from each image are shown in Fig. 3.39.
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Figure 3.40: Two examples of unary correspondences between nodes extracted from images that
contain concentric ellipsoids, which differ by translation. a). A slab-like node in the shell of image R
is selected (yellow) and the corresponding nodes in image Q are highlighted in b. c). A cylindrical
node within the inner ellipsoid of image R is selected (yellow)and the corresponding nodes in image
Q are highlighted in d.
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Figure 3.41: Unary correspondence matrix calculated for nodes extracted from images that con-
tain concentric ellipsoids, which differ by translation. White indicates perfect correspondence.
Nodes along the diagonal dashed-line are known correspondences. The red squares indicate the
correct correspondences for the nodes selected in Figs. 3.40a. and 3.40c.
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Figure 3.42: Three examples of binary correspondences between doublets extracted from images
containing two concentric ellipsoids for demonstrating translational invariance. a). A doublet
consisting of a cylindrical and slab-like node is selected (orange) in the reference image. b). The
correctly corresponding doublet is highlighted (orange). c). and d). Two incorrect correspondences
are highlighted (orange).
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Figure 3.43: Binary correspondence matrix calculated from images containing two concentric
ellipsoids for demonstrating translational invariance. Red squares connected by an orange line
indicates the binary metric evaluated between a pair of doublets from Fig. 3.42.
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Figure 3.44: Two examples of trinary correspondences between triplets extracted from two images
containing concentric ellipsoids, one of which is translated. a). A selected triplet (purple) consisting
of 2 cylindrical nodes and a slab-like node and b). the correctly corresponding triplet. c). and d).
Two incorrectly corresponding triplets are highlighted (purple). (purple).
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Figure 3.45: Trinary correspondence matrix calculated from two images containing concentric
ellipsoids, one of which is translated. Red squares connected by a labeled purple line indicate the
trinary metric evaluated for triplets from Fig. 3.44. The first letter refers to the reference image
and the second letter refers to the query image in Fig. 3.44.

Unary, binary, and trinary correspondences were determined with µT = βT = τT =

0.10. Two examples of unary correspondences are shown in Fig. 3.40. As before, the

correct correspondence is highlighted among other nodes of sufficient similarity. The unary

correspondence matrix is shown in Fig. 3.41 for which the correct correspondences of the

selected nodes in Fig. 3.40 are highlighted with red squares.
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Several examples of binary correspondences are shown in Fig. 3.42. A selected doublet

from the reference image is shown in Fig. 3.42a with the correct correspondence in Fig. 3.42b.

Two incorrect correspondences, with both nodes of the doublets being incorrect, are shown

in Figs. 3.42c and d. These doublet correspondences are shown as labeled orange lines in the

binary correspondence matrix (Fig. 3.43). Likewise, examples of trinary correspondences

are illustrated in Fig. 3.44 and denoted as labeled purple lines in the trinary correspondence

matrix (Fig. 3.45).

As can be seen in the binary and trinary correspondence matrices, some false correspon-

dences are removed after the matrix is normalized. For example in the binary correspondence

matrix, the pair of doublets indicated by the line labeled a-c is shown in Figs. 3.42a and

3.42c. The doublets were said to correspond because the binary metric was less than the

threshold. However, after the correspondence values of the constituent nodes are normalized

by the maximum correspondence accumulated by doublets, the nodes no longer correspond.

This is best illustrated by the high correspondence value between nodes nR,22 and nQ,5, i.e.,

Cβ(nR,22, nQ,5) as shown in Fig. 3.43.
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Figure 3.46: Correspondence matrices calculated from the translated concentric ellipsoids data
set. From left to right, are the unary, binary, and trinary correspondence matrices. a). Calculated
correspondence matrices when using the reference nodes as the query nodes. b). Correspondence
matrices calculated for query nodes produced by translating the reference nodes by 10 voxels along
the x-axis. c). Matrices calculated for query nodes extracted from translated concentric ellipsoid
image.
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For comparison, two sets of correspondence matrices were calculated to assess the effect of

translation on the correspondence framework. First, the reference nodes were also used as the

query nodes, and correspondences were determined to establish the “ideal” correspondence

matrices for these nodes. These correspondence matrices are shown in Fig. 3.46a. As

expected from the first experiment in this section, there are strong correspondences on the

diagonal of the trinary correspondence matrix with sparse cross-correspondences.

Correspondences were then determined after manually shifting the query nodes by +10

voxels along the x-axis. Since the properties of the query nodes are left unchanged, it was

expected that any differences in correspondence values can be attributed to the translation.

The correspondence matrices calculated from these nodes are shown in Fig. 3.46b, and as

expected, are identical to those in Fig. 3.46a since the relative geometric relationship between

the nodes is independent of global translation. Shown in Fig. 3.46c are the correspondence

matrices calculated from the translated concentric ellipsoids data set. Similar to the results

of the rotation experiment, differences between the “ideal” and “experimental” matrices

can be attributed to differences in node properties and location as a result of the sampling

artifact discussed in Section 2.3.1. Shown in Figs. ??a - ??c are graphs of the absolute

difference in scale and dimensionality between corresponding nodes. The magnitude of the

location difference between the theoretical and experimental node sets is graphed in Fig.

??d as a function of node index. From these graphs, it appears that fairly large values

for scale, λ2, and magnitude of location difference account for the small number of correct

correspondences.

Rotation by 90◦ had less of an impact on determining correspondences than translation,

which can be observed by comparing the correspondence matrices. The average and standard

deviation was calculated for each of the various difference measures from the translated and

rotated data (Table 3.3). The largest disparity between the data sets was for scale and λ2

for which the translated set had a higher average and standard deviation. It is noted that

rotation by angles other than 90◦ and translation by values other than +10 voxels may have

produced quite different results.
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Table 3.3: Average and standard deviation calculations of difference measures between corre-
sponding nodes for validation in the presence of rotation by 90◦ and translation.

Rotation

Difference Measure Average (voxels) Standard Deviation (voxels)

Scale difference 1.023 1.056

λ1 difference 0.000344 0.000403

λ2 difference 0.0194 0.0279

Location difference magnitude 1.332 0.356

Translation

Difference Measure Average (voxels) Standard Deviation (voxels)

Scale difference 1.936 2.271

λ1 difference 0.000643 0.000592

λ2 difference 0.0483 0.0681

Location difference magnitude 1.354 0.656
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3.6.2 Measuring Correspondence Sensitivity and Specificity

In this section, correspondence sensitivity and specificity are quantified via ROC curve

analysis. A “normal brain” image obtained from the BrainWeb simulated brain database

(http://www.bic.mni.mcgill.ca/brainweb/selection normal.html) was used. Since the brain

contains many structures of varying size, it was expected that a large number of differing

nodes would be extracted. The following parameters were selected for the simulation:

• Modality (pulse sequence): T1

• Slice thickness (in-plane spacing is 1mm × 1mm): 1mm

• Noise (relative to brightest tissue): 3%

• Intensity non-uniformity: 20%

Figure 3.47: Image obtained from the BrainWeb simulated brain database with medial nodes
overlayed. Cylindrical are located in the eyeballs and slab-like nodes are located throughout the
image such as in the skull and lateral ventricles.

The image was 8-bit and 181 × 217 × 181 in size. Various cross-sections of the image are

shown in Figs. 3.19 and 3.47. The same image was used as both the reference and query

images to easily establish ground-truth as discussed in Section 3.5. Core atoms were formed

with identical parameter settings for each image and clustered into 105 medial nodes. These

nodes are overlayed on the image data in Fig. 3.47. Cylindrical nodes (2 intersecting green
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lines) make the eyeballs identifiable, since the approximately spherical nature of eyeballs is

detected as cylindricalness. Slab-like nodes can be seen throughout the image such as in the

skull and lateral ventricles.

To generate an ROC curve for a given correspondence metric, correspondences were

determined for 30 different values of CT (the threshold on calculated correspondence values).

The values for CT were chosen at evenly spaced intervals between 0 and 1. A value of 0.5 was

arbitrarily chosen for DT (the ground-truth threshold). Correspondences were then classified,

and the True Positive Fraction and False Positive Fraction were computed to generate the

ROC curve for the given correspondence metric.

The calculated ROC curves for the unary, binary, and trinary metrics are shown on

the same graph in Fig. 3.48. The resulting ROC curves reflect the expectation of the unary

metric performing better than randomly guessing, the binary metric being more specific than

the unary metric, and the trinary metric determining the most correct correspondences. By

using the trapezoidal rule, AROC was calculated for each correspondence test. Results are

presented below in Table 3.4, demonstrating the expected increase in accuracy for each

successive metric.

Subsequent chapters in this dissertation will develop further methods for assessing cor-

respondence performance.
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Figure 3.48: Calculated ROC curves for each correspondence metric.

Table 3.4: Calculated AROC for each correspondence metric.

Area Under the ROC Curve

Unary Metric 0.72

Binary Metric 0.82

Trinary Metric 0.94
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4.0 IMPLIED TRANSFORMS TO IMPROVE CORRESPONDENCES

In this chapter, a method to improve upon the correspondence framework is developed. The

trinary metric was shown, with ROC curve analysis in Section 3.6.2, to reduce the number

of false correspondences that the unary or binary metric might find. Although preliminary

results are encouraging, the trinary metric still tends to result in a number of incorrect

triplet correspondences. Further reduction in the number of false correspondences may be

accomplished by introducing a global analysis of the geometric relationship between nodes

via transforms implied by triplet correspondences. It is common in image registration to

compute an optimum transform between a local set of features. Theoretically, an optimal

transform would maximize the number of true correspondences (true positives) and minimize

the number of false correspondences (false positives) between the images. Such methods of-

ten assume a rigid transform for the entire feature set between images. A rigid transform

involves only translation and rotation, preserving the distance between any two points. For

many applications, a rigid transformation is sufficient for describing the spatial relation-

ship between feature sets. For example, features extracted from intra-subject brain images

may be aligned with a rigid transformation given that the brain’s motion is minimal. How-

ever, in some applications non-rigid transforms are required to accommodate for structure

deformation.

Each triplet correspondence implies a transform that maps triplets in the query image

to triplets in the reference image as shown in Fig. 4.1. To better accommodate local struc-

ture deformation, affine transforms are computed. An affine transform applies translation,

rotation, and anisotropic scale, preserving collinearity, but not necessarily angle or distance.

The affine transform is chosen because, in a 2D space, any triangle (triplet) can be perfectly

transformed into any other triangle (triplet). However in 3D, computing an affine transform
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Figure 4.1: Shown are the implied transforms between a triplet in the reference image and po-
tentially corresponding triplets in the query image.

requires 4 points. Rather than extending cliques to include 4 points a method to extrapolate

a triplet to a tetrahedron is developed.

Affine transforms are computed between corresponding tetrahedra, mapping them from

image Q to image R. These affine transforms are applied to every tetrahedron in image Q,

and the transformed tetrahedrons are then compared to the respective corresponding tetra-

hedra in image R. A correspondence likelihood is computed for each correspondence based

on how well a given transform fits. The correspondence likelihood is essentially a cumu-

lative vote for correspondence. Tetrahedra accumulate correspondence likelihood for each

transform for a final measure of correspondence. The integration of triplet transforms into

the correspondence hierarchy is shown in Fig. 4.2. The following sections detail the meth-

ods of calculating implied transforms from triplet correspondences, extrapolating triplets to

tetrahedra, and calculating the correspondence likelihood as a measure of correspondence.

Medial Nodes

Corresponding
Doublets

Corresponding
Singlets

Reference
Image

Query
Image

core atoms

Medial Nodes
core atoms

Corresponding
Triplets

Implied
Transforms

Improved
Correspondences

Figure 4.2: For each set of corresponding triplets, a transform is implied that maps a triplet from
image Q to its corresponding triplet in image R. The transform, once computed, can be applied to
other triplets to improve their accuracy.
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4.1 COMPUTING IMPLIED 3D AFFINE TRANSFORMS

The 3D affine transform is formulated by first considering the transform between two 3D

points. Only 3 degrees of freedom are required to describe such a transformation, which

may be construed as translations along each cardinal axis. Let ri = (xR,i, yR,i, zR,i) be the

coordinates of the ith node in image R and qj = (xQ,j, yQ,j, zQ,j) be the coordinates of the

corresponding jth node in image Q. By using homogeneous coordinates, point qj can be

mapped to point ri in the coordinate system of image R by

Ri = TQj, (4.1)

where Qj = [qj, 1], Ri = [ri, 1], and T is the transformation matrix. In matrix representa-

tion 
xR,i

yR,i

zR,i

1

 =


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1




xQ,j

yQ,j

zQ,j

1

 , (4.2)

where tx, ty, and tz are translations along the respective cardinal axes in the coordinate

system of image R.

For a 3D affine transform, there are 12 parameters to account for various properties such

as translation, rotation, and anisotropic scale. These particular properties have a total of 9

independent modes of variation. A triplet consists of three nodes that comprise the vertices

of a triangle called a triplet triangle. Aligning two triplet triangles in 3D space requires

8 modes of variation; 2 rotations and 1 translation to make the triangles co-planar and 2

translations, 1 rotation, and 2 scales to make the vertices of the triangles coincident. Scale

in the direction orthogonal to the triangle plane is not accounted for making it impossible

to compute a 3D affine transform between triplets since it is an under-constrained problem.

Utilizing quadruplets of nodes can account for the remaining mode of variation. However,

it is unlikely that a sufficient number of similar cliques containing quadruplets of nodes

would exist to determine correspondences. The computational requirements would also be

huge because of the increased combinatorial complexity, i.e.,
(

m
4

)
, where m is the number of
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nodes. Instead, triplet triangles are extended to tetrahedrons to account for the remaining

mode of variation, making the transform solvable.

c

h

L1,3L1,2
m

n̂

q4

q3q2

q1

L2,3

Figure 4.3: A triplet tetrahedron formed from an equilateral triplet triangle consisting of nodes
q1, q2, and q3. Black dashed lines indicate the edges of the tetrahedron formed by projecting a
vector to q4, orthogonal to the triangle in the direction of n̂ at a distance of h from the center of
mass of the triangle.

Three points of the tetrahedron are from the underlying triplet, and the fourth point is

calculated by projecting a vector orthogonal to the plane of the triplet triangle. A triplet

tetrahedron formed from a medial node triplet is shown in Fig. 4.3. Points q1, q2, and q3 are

nodes from the triplet. The fourth point, q4, is positioned along a unit vector n̂, orthogonal

to the plane made by the triplet triangle. The origin of the orthogonal vector is located at

the center of mass of the triplet triangle, which is defined as the average location of those

three points, i.e.,

cm =
q1 + q3 + q3

3
. (4.3)

The distance, h, to the fourth point from the triplet triangle’s surface, has been chosen to

be a function of the average length of the triplet triangle sides. Roughly equilateral triplet

triangles are sought to avoid transformations involving eccentric triangles which would be

prone to degenerate solutions of the affine transform. To extend the triplet to a tetrahedron,

h is now derived with reference to Fig. 4.4.
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Figure 4.4: A triplet tetrahedron to illustrate the derivation of h.

For the derivation of h, the case where a triplet triangle is exactly equilateral is examined,

with the length of each triplet triangle side denoted as L. In the plane of the equilateral

triangle, the angle at each vertex is bisected and the intersection of these bisects occurs at

the center of mass cm. The bisect at vertex q3 intersects the (q1,q2) side of the triangle at

point q5. This intersection is orthogonal to that side of the triangle, and thus ‖q5 − q2‖ =

‖q5 − q1‖ = L
2
. The distance between q5 and cm is denoted as a, and is calculated by

a =
L

2
tan(30◦) =

L

2

√
3

3
. (4.4)

The points q5, cm, and q4 form a right triangle for which h can be calculated. The hypotenuse

of this right triangle is of length b, calculated by the Pythagorean Theorem as

b =

√
L2 − L2

4
=

√
3

4
L2 =

√
3

2
L. (4.5)

Once again, utilizing the Pythagorean Theorem,

h2 = b2 − a2. (4.6)
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Solving for h, and substituting Eqs. 4.4 and 4.5 into the above equation yields:

h =
√

b2 − a2 =√(√
3

2
L

)2

−
(√

3

3

L

2

)2

=

√
3

4
L2 − 3

9

L2

4
=√

27

36
L2 − 3

36
L2 =

√
24

36
L2 =√

2

3
L. (4.7)

To extend the equilateral case to the general case of any triplet triangle, h is calculated

with the average length weighted by
√

2
3
, i.e.,

h =

√
2

3
L̄, (4.8)

where L̄ is the average length of the triangle sides, L̄ = L1,2+L2,3+L1,3

3
. The constant

√
2
3

ensures that a perfect equilateral triangle would yield a perfect equilateral tetrahedron and

that, in general, h will produce a reasonably proportioned tetrahedron.

The orthogonal unit vector n̂ is calculated by taking the cross product of the vectors

between any two vertices of the triplet triangle. The direction of n̂ is determined by the

“right-hand rule.” For example, using the (q1,q2) and (q1,q3) sides of the tetrahedron,

n̂ =
[
(q2 − q1)× (q3 − q1)

]
. (4.9)

Finally, the location of the fourth point with respect to the triplet’s surface that converts

the triangle into a tetrahedron is calculated by

q4 = cm + hn̂. (4.10)

To expand Eq. 4.1 to four points, let ri = (xr,i, yr,i, zr,i) be the coordinates of the ith node

from a triplet in image R and qj = (xq,j, yq,j, zq,j) be the coordinates of the corresponding

jth node from a triplet in image Q. The system can be represented as

[R1,R2,R3,R4] = T [Q1,Q2,Q3,Q4, ] , (4.11)
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where Ri and Qi for 1 ≤ i ≤ 3 are the homogeneous coordinates of the vertices of the triplet

in images R and Q, respectively, R4 and Q4 are the points orthogonal to the respective

triplet triangles that create triplet tetrahedrons, and T is the 3D affine transform matrix.

The matrix form of the equation is
xR,1 xR,2 xR,3 xR,4

yR,1 yR,2 yR,3 yR,4

zR,1 zR,2 zR,3 zR,4

1 1 1 1

 =


a b c d

e f g h

i j k l

0 0 0 1




xQ,1 xQ,2 xQ,3 xQ,4

yQ,1 yQ,2 yQ,3 yQ,4

zQ,1 zQ,2 zQ,3 zQ,4

1 1 1 1

 , (4.12)

where parameters a through l are the 12 parameters of the affine transform. Given a pair of

calculated tetrahedrons from images R and Q, the affine transform can be calculated by

T = RQ−1. (4.13)

Since it is guaranteed that no three points in either tetrahedron are collinear, the system

will not be degenerate.

4.2 APPLYING THE AFFINE TRANSFORM AND COMPUTING

CORRESPONDENCE LIKELIHOOD

Triplet correspondences imply a transform that maps nodes from image Q to those in image

R. Triple tetrahedra are computed for every triplet in both images and an affine transform

is computed between every tetrahedron and each of its corresponding tetrahedra. Each

transform is then applied to all of the tetrahedra in image Q and a quantitative measure for

each transform fit is calculated.

A transformed tetrahedron in image Q is denoted as Q′ and is calculated by

Q′ = TQ, (4.14)

where Q′ = R if T was calculated between these particular tetrahedra, and the underlying

triplets are very similar.
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The transform fit is calculated as the Root Mean Square (RMS) error between the

vertices of triplet q′ and r. It is defined as

RMS =

√√√√1

3

3∑
i=1

(ri − q′i)
2. (4.15)

A small value for RMS indicates that the tetrahedra are closely aligned, whereas a large

value for RMS is indicative of a poor alignment between the tetrahedra.

Each pair of tetrahedra is assigned a correspondence likelihood as determined by a weight-

ing function based on the RMS. Potential likelihood functions are the normalized decaying

exponential or normalized Gaussian. The likelihood function assigns a value between 0 and

1, where 1 signifies a transform with perfect alignment. Tetrahedra accumulate correspon-

dence likelihoods for a final vote of correspondence, denoted as χ. It is expected that false

triplet correspondences will be further reduced and the number and strength of correct cor-

respondences will be increased. To summarize, Algorithm 1 will compute a correspondence

likelihood for tetrahedra in images R and Q. The algorithm is also summarized as a flow

diagram in Fig. 4.5.

Algorithm 1 Algorithm for Computing the Triplet Transform Metric

for all triplets in images R and Q do

compute tetrahedra from triplets in images R and Q

end for

for all tetrahedra in image Q do

compute the affine transform between a corresponding tetrahedron in image R

apply the affine transform to every tetrahedron in image Q

calculate the RMS error for each transformed tetrahedron in image Q and its corre-

sponding tetrahedron in image R

calculate a correspondence likelihood for each applied transformation

end for

compute the triplet transform metric by normalizing the correspondence likelihood mea-

sures
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Figure 4.5: Computing the triplet transform metric.

This method is basically a form of RANdom SAmpling Consensus (RANSAC) [109], an

algorithm typically used for fitting models in the presence of many outliers. The triplet

transform metric tries to identify correspondences in the presence of many incorrect cor-

respondences. It is expected that using implied transforms will increase the number of

correctly identified correspondences, as compared to the unary, binary, and trinary metrics

as illustrated in Fig. 4.6. In the figure, known correspondences are shown as ×’s on the

matrix diagonal. The ×’s that are off the matrix diagonal illustrate incorrect correspon-

dences. Following the application of implied transforms, these incorrect correspondences are

removed, as illustrated in the left figure with dark circles. It may be more efficient to focus

on triplets that have only one corresponding triplet since these are more likely to be a correct

correspondence rather than a triplet with multiple correspondences.

4.3 EMPIRICAL RESULTS

The triplet transform metric is now demonstrated using medial nodes extracted from Brain-

Web images. The BrainWeb image described in Section 3.6.2 was used for both the reference

and query images. A total of 24 nodes were extracted using the core atom parameters listed

in Table 4.1. Some of the nodes are shown with one of the images in Fig 4.7. Like previous
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Figure 4.6: Left shows a correspondence matrix prior to using correspondence likelihood, where
×’s denote correspondences. Right shows an increased number of correct correspondences following
the application of implied transforms. Dark circles are the previously incorrect correspondences.

experiments with identical images, known correspondences will be on the diagonal of a given

correspondence matrix. Correspondences were calculated as before and a Gaussian with a

mean of 0, standard deviation of 10, and amplitude of 1 was used for the correspondence like-

lihood function when calculating the triplet transform metric. All of these correspondence

matrices are shown in Fig. 4.8. By comparing the triplet transform and trinary correspon-

dence matrices, it is evident that correspondences are improved by the reduced number of

off-diagonal correspondences.

The calculated ROC curves for the correspondence metrics are shown together in the

same graph in Fig. 4.9. The resulting ROC curves show that the unary metric performs

better than randomly guessing, and the binary and trinary metric perform sequentially

better than the unary metric. Additionally, the triplet transform metric performs better

than the trinary metric, which is quantified by the area under the ROC curve (Table 4.2).

Unfortunately, the triplet transform metric suffers from computational complexity resulting

in slow computation time. This experiment was performed on a laptop with a Pentium

IV, 2.4 GHz mobile processor and 1 GHz of RAM. The computation times for evaluating

the unary, binary, trinary, and triplet transform metrics were 1.1, 2.8, 5.1, 197.6 seconds,

respectively.
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As will be described in Chapter 6, an iterative optimization process will utilize the

correspondence framework to estimate the location of anatomical landmarks in a query

image. Since the process is iterative, including the triplet transform metric will make it

extremely slow to converge. Thus, the triplet transform metric will not be included in the

optimization process, which will be sufficient without it since the trinary metric has been

shown to accurately determine correspondences. The triplet transform metric can be used in

applications that are non-iterative or if time is not of concern. Such is the case for initializing

anatomical landmarks in the query image, which will be discussed in greater detail in Section

6.4.
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Table 4.1: Core atom parameter settings for extracting medial nodes to demonstrate the triplet
transform metric.

Parameter Description Value

Blur Repetitions Number of applications of boundary

point kernel

2

Boundary Point Threshold Intensity threshold for determining

boundary points

128

Distance Minimum Minimum search distance for finding op-

posing boundary point

15

Distance Maximum Maximum search distance for finding

opposing boundary point

40

Face-to-Faceness Tolerance Allowable tolerance for face-to-faceness 0.10

Polarity Direction to search for opposing bound-

ary point

0 (direction of

the gradient)
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Figure 4.7: BrainWeb image used to demonstrate the triplet transform metric shown with ex-
tracted medial nodes.
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Figure 4.8: Correspondence matrices calculated by evaluating medial nodes extracted from iden-
tical BrainWeb images with the a.) unary, b.) binary, c.), trinary, and d.) triplet transform
metrics.
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Figure 4.9: Calculated ROC curves for each correspondence metric, including the triplet transform
metric. The dashed line indicates random guessing.

Table 4.2: Calculated AROC for each correspondence metric, including the triplet transform
metric.

Area Under the ROC Curve

Unary Metric 0.66

Binary Metric 0.84

Trinary Metric 0.90

Triplet Transform Metric 0.95
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5.0 GENERATING VALIDATION DATA FROM A PARAMETERIZED

MODEL

A primary goal of this research is the investigation of metric performance as a function of

geometric variations between structures in two images. To achieve this goal, experiments will

be conducted on carefully constructed computer generated data to 1) extract a reliable set of

core atoms 2) permit a means of systematically varying structure geometry and 3) establish

correspondence ground-truth. Core atoms are inherently sensitive to image noise and unable

to extract medial properties at branches and ends. Core atoms are also dependent on a priori

knowledge of desired local structure scale and intensity, requiring more than one application

to locate multiple structures that differ significantly in these parameters.

The limitations of core atoms will be overcome by creating individual structures that are

conducive to core atom formation with a single pass, and by forming core atoms on each

structure independently. The core atoms from these individual applications will be combined

into a single set of core atoms for further analysis. This population of core atoms will be

sufficient for validating the correspondence methods. The computer generated data will be

constructed from a parametric model emulating a CT scan of a human brain. The brain was

chosen because it consists of a large number of structures of varying size and shape. Since

the model is entirely parameterized it will be straightforward to vary structure geometry.

The details of determining ground-truth for correspondences from the model are detailed in

Chapter 6.
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5.1 DETERMINING INTENSITY RANGE OF COMPUTER GENERATED

DATA

In practice, the preferred imaging modalities for structural brain scans are CT and MRI

since both modalities capture high resolutions images. Generally, MRI images have more

anatomic detail than CT images. However, CT images are acquired at a faster rate and are

less expensive to produce than MRI images. Another important distinction between MRI and

CT images is the calculation of image intensity. The voxel intensity of MRI images depends

on several system dependent variables such as repetition time and echo time, whereas, the

intensities of CT images are calculated on an absolute scale based on tissue attenuation. For

example cerebrospinal fluid always has the approximate intermediate value of 15 HU in CT

images, but can have a higher or lower native value in MRI images depending on the system

settings used.
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Figure 5.1: Assigning gray values to image pixels by windowing the range of Hounsfield Units. In
this figure, the entire HU range is mapped to 8-bit gray values.

During CT image reconstruction, pixels are assigned a numerical value directly related

to the X-ray attenuation characteristics of the particular scanned tissues. These values are

measured in Hounsfield Units (HU), ranging from -1000 for air to +1000 for dense bone.

Water is assigned a HU value of 0. Gray levels on an image display can be assigned to a
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range of Hounsfield Units by windowing the HU range as shown in Fig. 5.1. The window

width determines the range of Hounsfield Units to be displayed as gray values, and the

window level is the center of this region. For imaging soft tissue, a window width of 400 or

600 HU and a window level of 0 or 100 HU are generally acceptable.

Rather than arbitrarily assigning intensity values to the brain structures in the parametric

model, the HU for each structure is chosen such that it corresponds to what is typically found

in clinical use. Gray values are calculated for each structure using a window width and level

typical for visualizing soft tissue. The chosen Hounsfield Units were referenced from a paper

published by Biswas and Gupta [110]. The authors developed methods for calculating the

true tissue color of brain structures from CT images based on several parameters including

HU values. In making their calculations, the HU values for brain structures were tabulated.

Although, the CT images were obtained from goats, the measured HU should sufficiently

reflect those of a human brain scan.
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5.2 CREATING BRAIN STRUCTURES FROM SHAPE PRIMITIVES

The geometry of brain structures is built from shape primitives such as spheres, cylinders,

and ellipsoids to ensure a rich set of core atoms. Compound shapes such as the cortex and

cerebellum are generated using Constructive Solid Geometry (CSG). Shape primitives are

combined using the four basic operations of CSG: union, intersection, difference, and merge.

These CSG operations are briefly described in Table 5.1.

Table 5.1: The four basic CSG operations for creating complex shapes from primitives. A and B
are the shape primitives and C is the resultant shape.

CSG Operation Brief Description Notation

Union Fuses two or more shapes into a single shape C = A ∪B

Intersection Creates a shape from the overlapping regions of two

or more shapes

C = A ∩B

Difference Subtraction of the second shape from the first shape C = A−B

Merge Variant of union, where the internal surfaces are re-

moved

C = A ]B

The parametric model for the generation of a synthetic brain image includes the following

structures: cortices, eyeballs, optic nerves, brain stem, cerebellum, lateral ventricles, and

thalami. The geometric representations and HU values for these structures are summarized

in Table 5.2.
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Table 5.2: Geometric representations and assigned Hounsfield Units of modeled brain structures.

Structure Shape Description HU

Cortex Multiple Ellipsoids Merge of two ellipsoids to create right

and left cortices then various difference

operations with ellipsoids to refine the

shape the cortex

40

Eyeballs 2 Spheres Perfect spheres defined by location and

radius

100

Optic Nerves 2 Cylinders Cylinders cross each other anterior to

the brain stem

50

Brain Stem 1 Cylinder Angled 45◦ from posterior to anterior in

sagittal plane

30

Cerebellum 2 Ellipsoids Two merged and flattened (2 long axes

and 1 short axis) ellipsoids

45

Lateral Ventricles 2 Bent Cylinders Manually delineated as a bent tube 10

Thalami 2 Ellipsoids Placed laterally to the brain stem 34
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5.3 EMPIRICAL RESULTS

In this experiment, a simulated CT brain image was generated using the previously described

geometric representations and HU values for individual structures. The specific parameters

for the eyeballs, optic nerves, brain stem, cerebellum, and thalami are listed in Table 5.3.

The parameters for the lateral ventricles and cerebral cortex are not tabulated, but instead

described below.

Table 5.3: Parameters used to model brain structures.

Structure Shape Parameters

Eyeballs Spheres of radius 10 separated by 25 voxels along the x-axis

Optic Nerves 2 cylinders of radius 2 and length 30

Brain Stem 1 cylinder of radius 5 and length 50

Cerebellum 2 ellipsoids with axes of length 30 and 30 along x- and z-axes, and 20

along the y-axis separated by 10 voxels

Thalami 2 ellipsoids with axes of length 10 and 10 along the x- and y-axes, and

17 along z-axis separated by 14 voxels

The lateral ventricles were modeled as 2 bent tubes with non-uniform curvature. The

medial axis of one ventricle was digitally drawn on a grid. The coordinates of points along

the medial axis were used to parameterize a tube. A tube with a radius of 3.9 voxels was

centered at (42, 35, 65) and rotated 15◦ about the z-axis. The other ventricle was created

by mirroring the same tube with respect to the yz-plane.

The left and right cortices were created by first merging 2 ellipsoids. Each ellipsoid had

an axis length of 70 voxels along the x-axis, 60 voxels along the y-axis, and 80 voxels along

the z-axis. The ellipsoids were centered 7 voxels from the image origin along the x-axis. To

trim the bottom of these merged ellipsoids, an ellipsoid region was centered at (50, 60, 50)

of size 70× 114× 96 voxels. This region encased the merged ellipsoids, and any voxels not

contained within this region were removed. Ellipsoid regions were also used to create grooves

in front of and underneath the cortex by removing voxels within these defined regions.
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The 8-bit gray level pixel values were calculated using a window range of 200 and window

level of 100. Cross-sections of the resulting 8-bit image and a surface rendering are shown

in Fig. 5.2 with structures labeled. Several other viewpoints of the surface rendering are

shown in Fig. 5.3. The image size is 100 × 100 × 100 voxels and structure locations are

positioned relative to the center of the image. Geometric relationships between structures are

defined, permitting a means to efficiently adjust structure geometry for a thorough analysis

of the correspondence metrics in the presence of geometric variation. If more structures are

required, they may be easily incorporated with the software that has been developed. The

range of gray values can also be easily adjusted by changing the settings of the window range

and level.

Figure 5.2: Computer generated CT brain image with structures labeled. Left shows a). trans-
verse b). sagittal and c). coronal cross-sections of a computer generated CT brain image. Right
shows a 3D rendering of brain structures modeled as shape primitives and compound shapes
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Figure 5.3: a). Coronal b). transverse, and c). sagittal views of a synthetic CT brain image.
Left column images are cross-sections at the image origin. Right column of images are renderings
of brain structures within a translucent cerebral cortex.
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6.0 AUTOMATICALLY ESTIMATING ANATOMICAL LANDMARK

LOCATIONS

The parametric brain model was developed to systematically perturb the geometry of struc-

tures to create query images that differ from the reference image. Perturbing the query

image will introduce variation in the location and number of individual medial nodes due to

sampling artifact, which rules out the previous method of validation based on known corre-

spondences between individual nodes. Therefore, correct correspondences can no longer be

expected to be along the diagonal of a correspondence matrix. Instead, the correspondence

metrics will be validated by their ability to infer the location of anatomical landmarks in the

query image given that the same landmarks are at known locations in the reference image.

Landmarks differ from nodes in that landmarks are directly related to underlying anatomy

and have unique identities, whereas nodes are processed from local image features.

Shown in Fig. 6.1 is a reference image depicting an eyeball with landmarks (solid ×’s)

placed at the cornea, optic nerve, and center of the eyeball. Also shown is a query image

with a larger, displaced eyeball. Ground-truth landmarks are shown as solid ×’s as deter-

mined by the parametric model. The dashed ×’s indicate landmark locations inferred from

correspondences between cliques containing landmarks and nodes (dots). In this chapter,

landmarks are defined, the method for inferring their locations from feature correspondences

is developed, and their role in validating correspondences for images with structure variation

is detailed.
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Figure 6.1: Reference image depicting an eyeball and query image depicting an eyeball with
geometric variation (shifted and larger). Left shows landmarks placed on the reference image at
the cornea, optic nerve, and center of the eyeball (solid ×’s). Right shows ground-truth landmarks
as solid ×’s and hypothetical estimated landmarks as dashed ×’s.

6.1 DEFINING LANDMARKS

In the eventual clinical system, an expert will place landmarks of interest in the reference

image. Since the data is parametrically defined by a model, anatomical landmarks can be au-

tomatically placed at significant locations on a shape’s medial manifold, surface, or anywhere

within the shape, and the location of these landmarks can deform with the model providing

ground-truth. Thus, there are three different classes of landmarks: medial landmarks, e.g.,

center of a spherical structure, surface landmarks, e.g., anterior horn of the lateral ventricles,

and interior landmarks. All classes of landmarks can be placed in an image by the paramet-

ric brain model. An example set of landmarks for brain structures are tabulated in Table

6.1.

It may be possible to reduce the number of clique comparisons by differentiating between

the three types of landmarks. However, the current goals of this dissertation will focus on

developing methods to include all types of landmarks together. Computational efficiency

will be addressed in future research. With the introduction of landmarks, there exists three

different clique configurations: those consisting of only 1) nodes, 2) only landmarks, or 3)

both landmarks and nodes.

114



Table 6.1: Examples of potential landmarks for select brain structures.

Structure Potential Landmark Locations

Eyeball Center, optic nerve junction, and corneal junction

Optic Nerves Intersection of nerves and points along the central axes

Brain Stem Points along the central axis

Cerebellum Center location

Lateral Ventricle Ends and points along the central axis

Thalamus Center and points along central axis

In addition to location, each landmark has properties including a label, scale, and di-

mensionality. The ith landmark from the landmark set from image α is defined as

Lα,i = {`̀̀α,i, mα,i, σα,i, λα,i}, (6.1)

where `̀̀α,i is its location in image space, mα,i is a label, σα,i is medial scale, and λα,i is medial

dimensionality (a 2D vector). The set of NL landmarks from image α is defined as

Γα = {Lα,1, Lα,2, . . . , Lα,NL
}. (6.2)

The label is an English descriptor that uniquely describes the landmark for the purpose of

identifying landmarks. Labels are chosen to describe the shape or feature represented by the

landmark. Medial properties are assigned to landmarks, allowing correspondence metrics to

be calculated between landmark-containing cliques by using the same correspondence metrics

defined for medial nodes (Chapter 3). The medial scale and dimensionality of the landmarks

are arbitrarily assigned since landmarks do not inherently have any medial properties.

There are several strategies to consider when assigning medial scale and dimensionality

to a landmark. It is conceivable to assign landmarks varying dimensionality and scale based

on nearby nodes or by anatomical membership (e.g., eyeball landmarks are small spheres

and vessel landmarks are large cylinders). Conversely, all landmarks could be assigned the
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same dimensionality and scale. In that case, spheres are a nice representation of landmarks

because their orientation is arbitrary. For the remainder of this dissertation, all landmarks

will be spherical with eigenvalues λ1 = λ2 = λ3 = 1
3

and eigenvectors in the direction of the

cardinal axes (orientation is inconsequential due to spherical symmetry). The scale of all

landmarks is assigned the same arbitrary value.

6.2 CALCULATING CORRESPONDENCES BETWEEN LANDMARKS

By assigning medial properties to landmarks, correspondences between landmarks can be

evaluated with the same unary, binary, and trinary correspondence metrics already func-

tioning for nodes. Since all landmarks have the same dimensionality and scale, there is no

discrimination between landmarks when evaluated with the unary metric. However, geo-

metric relationships between the landmarks are captured by the binary and trinary metrics.

The correspondence values for the landmarks are appended to the rows and columns of the

correspondence matrices originally devised for node correspondences as shown in Fig. 6.2. A

correspondence matrix now contains all correspondences and cross-correspondences between

nodes and landmarks. In the diagram, 1) node-to-node correspondences are shown in the

white region, 2) landmark-to-landmark correspondences are shown in the light gray region,

and 3) node-to-landmark correspondences are shown in the dark gray region. The portion

of the matrix containing landmark-to-landmark correspondences is necessarily square since

both images must contain the same number of landmarks. The reference landmarks are

arbitrarily ordered and query landmarks are ordered in the same way since correspondences

between them are known, i.e., corresponding landmarks have the same label. Similar to

correspondence matrices computed for identical sets of nodes, corresponding landmarks will

be on the matrix diagonal. The analysis of the matrix portion containing only landmark

correspondences will be a critical step towards validating the correspondence metrics in the

presence of geometric variation as described in the following section. It is important to note

that correspondences evaluated between node-to-landmark cliques are not considered since

it is not plausible for nodes to correspond to landmarks.
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Figure 6.2: A correspondence matrix that includes the correspondences and cross-correspondences
between nodes and landmarks. Node-to-node correspondences are shown in the white region.
Node-to-landmark correspondences are shown in the dark gray region. Landmark-to-landmark
correspondences are shown in the light gray region. A pair of corresponding triplets that consist of
2 nodes (labeled “a” and “b”) and a landmark (labeled “c”) is shown as dark gray circles.
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6.3 CORRESPONDENCE OPTIMIZATION TO INFER LANDMARK

LOCATION

The system for inferring landmark locations is called MCTILL, an acronym for Medial Cor-

respondences To Infer Landmark Location. Correspondences between cliques consisting of

nodes and landmarks are employed by the system to estimate the location of landmarks in

the query image by iteratively repositioning the query landmarks in an effort to maximize

the landmark correspondences as measured between landmarks known to correspond, and

to minimize it between those known not to correspond (cross-correspondences). MCTILL

is illustrated in Fig. 6.3. MCTILL operates on two images: a reference image and a query

image. In this dissertation, the reference image has an associated collection of landmarks

automatically placed by the parametric model called the landmark model. These landmarks

are to be automatically placed in the query image. The ground-truth location for the land-

marks in the query image is determined parametrically to validate the system (Chapter

7). Eventually, the system will operate on medical images, and the landmark model in the

reference image will be manually defined by experts.
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Figure 6.3: System for inferring landmark locations from clique correspondences.
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The primary objective of MCTILL is to estimate landmark locations as shown in Fig.

6.4. The landmark model consists of the solid ×’s in the reference image. The geometric

relationships between landmarks are shown as gray, dashed lines. A doublet consisting of

a landmark and node is shown as a black dashed line. The solid lines between the images

indicates a correspondence between this doublet and its corresponding doublet in the query

image. Landmarks whose locations have been estimated based on such correspondences are

shown as dashed ×’s in the perturbed query image. After landmark locations are estimated

with MCTILL, the accuracy in estimating the location of query landmarks can be quantified

and used as a measure of metric performance. This accuracy measure will be calculated as the

RMS error between the estimated landmarks and the ground-truth landmarks (established

by the parametric model as discussed in Chapter 5).

The method for placing landmarks in the query image is briefly outlined below in Table

6.2. Steps 1 and 2 are initialization procedures for the inherent correspondence parame-

ters and the location of query landmarks. Steps 3-6 describe how MCTILL will optimize

landmark correspondences by repositioning the query landmarks in an effort to maximize

the landmark correspondences and minimize the landmark cross-correspondences. Step 7

evaluates MCTILL’s error in estimating landmark location, which is only applicable if a

ground-truth is known for the query landmarks , as it is with the parametric model.
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Figure 6.4: Left shows the landmark model as solid ×’s in the reference image. Geometric
relationships between the landmarks are shown as gray dashed lines. A doublet consisting of a
landmark and node is shown as a black dashed line. The solid lines between the images indicates
corresponding doublets. Right shows estimated landmarks as dashed ×’s in the perturbed query
image.

120



Table 6.2: Outline for utilizing the correspondence framework to infer landmark locations in a
query image. Steps 3-6 describe MCTILL.

Step Description

1 Heuristically initialize the inherent correspondence parameters.

2 Initialize the location of the landmarks in the query image.

3 Compute correspondences between the three types of cliques that consist of

either all nodes, all landmarks, or both nodes and landmarks (unary corre-

spondences do not need to be computed more than once).

4 Compute the landmark correspondence figure of merit from a correspondence

matrix.

5 If the figure of merit satisfies a threshold criteria, go to step 7. If the figure of

merit does not satisfy the threshold criteria, go to step 6.

6 Reposition the query landmarks and repeat steps 3 - 5 until the figure of merit

satisfies the threshold criteria.

7 Calculate MCTILL’s error in estimating the location of landmarks in the query

image if ground-truth is known, otherwise, end.
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As part of the initialization procedure, correspondences parameters inherent to each

metric will be equally weighted. Let the set of parameters inherent to the unary and binary

metrics be defined as

Θ = {aµ, bµ, aβ, bβ}. (6.3)

The parameters for the unary metric, aµ and bµ, will be set to 1
2

since aµ + bµ = 1. The

parameters for the binary metric will also be set to 1
2

since they are constrained the same way

as the unary metric. The trinary metric does not have any inherent parameters. Thresholds

for all metrics were set to 0.10. Techniques to initialize landmarks in the query image are

described below in Section 6.4.

MCTILL is an iterative process that operates by repositioning landmarks with the goal

of maximizing landmark correspondences and minimizing landmark cross-correspondences.

Critical to this optimization procedure is the portion of a given correspondence matrix

that consists of only landmark-to-landmark correspondences since correspondence between

landmarks are known. This sub-matrix is referred to as the Landmark Correspondence Matrix

(LCM) and is illustrated in Fig. 6.5. A correspondence matrix is shown in the upper left

corner. The circled quadrant of the correspondence matrix is the LCM, consisting of only

landmark-to-landmark correspondences. The ideal case is shown for an LCM, where the

0’s on the diagonal indicate perfect landmark correspondences and the 1’s off the diagonal

indicate no incorrect landmark correspondences. In computing these correspondences only

the binary and trinary metrics are meaningful since only the geometric relationships will

change as the landmarks are moved.
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Figure 6.5: A correspondence matrix is shown in the upper left corner. The circled quadrant of
the matrix consists of only landmark-to-landmark correspondences. The ideal case is shown, where
the 0’s on the diagonal indicate perfect landmark correspondences and the 1’s off the diagonal
indicate incorrect landmark correspondences

An LCM from a calculated correspondence matrix is denoted as Kµ, Kβ, Kτ , or Kχ

for the unary, binary, trinary, and transform metrics, respectively, and any LCM is denoted

as KL. Recall that the landmarks in the LCM are automatically ordered such that proper

correspondences fall on the diagonal of the matrix, as shown in Fig. 6.5. Thus, a figure of

merit for maximizing landmark correspondences can be defined as

FOMKL
= ρ− trace(KL)

NL

, (6.4)

where trace(KL) =
NL∑
i=1

NL∑
j=1

KLi,j for i = j, NL is the number of landmarks, and ρ is a penalty

factor to quantify cross-correspondences. The penalty factor is calculated as the average of

the off-diagonal elements,

ρ =
1

NO

NL∑
i=1

NL∑
i=j

KLi,j for i 6= j, (6.5)

where NO are the number of off-diagonal elements in the LCM. The range of possible val-

ues for the landmark correspondence figure of merit is −1 ≤ FOMKL
≤ 1. A value of

−1 indicates completely incorrect correspondences and a value of 1 indicates perfect corre-

spondences. The figure of merit can be calculated for all of the landmark correspondence
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matrices, but we are aiming to maximize the figure of merit for Kτ since the trinary metric

is more accurate than the unary and trinary metrics, and faster to compute than the triplet

transform metric.

The method for repositioning the query landmarks is a function of the correspondences

and a set of parameters, Φ. This generalized function, called the landmark displacement

function (LDF) is defined as

H = fΦ(µ, β, τ, χ). (6.6)

The LDF systematically chooses new landmark locations at each iteration through MCTILL

to increase FOMKL
. The estimated landmark locations in the query image is constrained

by the geometric relationship between landmarks in the reference image, as well as their

relationships to corresponding nodes in the two images. In the terminology of deformable

methods, i.e., snakes [24], the internal energy enforces geometric constraints on the land-

marks and the external energy relates the landmarks to nodes, which are, themselves, related

to both the reference and query images.

Two optimization techniques were developed and both of them are detailed in Section

6.5. The first technique is a brute force optimization method and the second technique is a

gradient ascent-like optimization method. Each technique has advantages and disadvantages

and both were employed for this dissertation research. The brute force optimization method

is computationally expensive, operating by performing an exhaustive search, which provides

insight into the optimization problem without having to categorize the local behavior of the

figure of merit as a function of location. The gradient ascent-like optimization method is

faster than the brute-force optimization method and used as the LDF for results presented

in the following chapter.

Given the ground-truth for landmark locations provided by the parametric model, the

performance of MCTILL can be assessed by computing a location error for each estimated

landmark. This error measure is defined as the L2-Norm of the difference between the

estimated landmark location and its ground-truth location, i.e.,

EL,i = ‖`̀̀Q,i − `̀̀GT,i‖, (6.7)
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where `̀̀Q,i is the estimated location of the ith landmark in image Q and `̀̀GT,i is the ith

landmark’s ground-truth location from the parametric model. An overall error measure for

locating the set of landmarks in the query image ΓQ is defined as the average of landmark

errors, which is calculated as

EL =
1

NL

NL∑
i=1

EL,i. (6.8)

It is possible to calculate EL since the ground-truth locations for landmarks in ΓQ are

known from the parametric model. The overall performance of the system in estimating

landmarks in the query image can be quantified by these error measures. Moreover, these

error measures provide a means to evaluate the correspondence framework in the presence

of geometric variation (Section 7).

In the following sections, strategies for initializing landmarks in the query image and

optimization techniques for maximizing the landmark correspondence figure of merit FOMKL

are described.

125



6.4 INITIALIZING QUERY LANDMARKS

Landmarks must be initialized in the query image prior to MCTILL’s optimization of land-

mark locations. If the orientation and size of the two images are known, the landmark

locations in the query image can be approximated by their locations in the reference image.

It becomes problematic with medical images since the object being imaged can move or

deform. Thus, pre-processing would be required to align the image objects manually or with

a registration method. Rather than relying on such pre-processing, it is proposed that the

implied transforms developed in Chapter 4 be used to initialize landmark locations. Corre-

spondences are computed with the triplet transform metric and the 4 node pairs with the

highest triplet transform correspondence value in Cχ are used to compute an affine trans-

form. The affine transform is then applied to the set of reference landmarks, mapping the

query landmarks into the coordinate system of the reference image. The transformed land-

marks can then be placed within the query image, and thus initialize landmark locations.

Results presented at the end of this chapter utilized this initialization method.

6.5 LANDMARK CORRESPONDENCE OPTIMIZATION TECHNIQUES

To maximize FOMKL
, two optimization techniques were developed. The Brute Force Op-

timization (BFO) method uses an LDF that displaces a given landmark to every location

within a defined region. This technique is computationally intensive, but is an exhaustive

search at a given resolution thereby avoiding being stuck in a local extremum. The Gradient

Ascent-Like Optimization (GALO) method operates by calculating a FOMKL
gradient and

displacing the landmark in the direction of increasing FOMKL
. The gradient ascent-like

method is computationally more efficient than the brute force method. The brute force

method is still developed here because it provides crucial insight into the optimization prob-

lem.

The generalized algorithm to optimize landmark correspondences is shown as pseudo-

code in Algorithm 2. The set of landmarks is repeatedly iterated through until one of
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two conditions are satisfied: Either landmarks can no longer be displaced to maximize the

figure of merit, which indicates a global maximum, or a pre-determined number of iterations

has been met. For each landmark in ΓQ, correspondences are determined and FOMKL
is

calculated. Within a local sampling region, the current landmark is temporarily displaced

via the LDF. All correspondences involving landmarks are then recomputed, and a new

FOMKL
is computed.

Once a landmark has been displaced and tested throughout the sampling region, the

location yielding the largest FOMKL
is recorded. After recording these maximum locations

for each landmark in ΓQ, the landmarks are permanently relocated. Landmarks are displaced

in this manner to avoid order dependency when traversing the set of landmarks. Therefore,

correspondences are determined based on the geometric relationships between the landmarks

at their initial location.

After relocating the landmarks to their new locations, several criteria for ending the

optimization are evaluated. First, it is determined if a global maximum for FOMKL
was

found by observing a decrease in FOMKL
for the following several iterations. A second

criteria is that if individual landmarks no longer move, presumedly because they have reached

their local maximum. The third criteria is that if a pre-determined number of iterations have

passed. This is a safety precaution for stopping oscillatory behavior and infinite loops. Shown

in line 7 of Algorithm 2 is the LDF of either the BFO or GALO methods. The details of

each method are described in the following sections.
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Algorithm 2 General Algorithm for Optimizing Landmark Correspondences

1: while optimization criteria not satisfied do

2: for all landmarks in ΓQ do

3: initialize the sampling region to the current landmark’s location

4: while FOMKL
is not a local maximum and current landmark is within sampling

region do

5: calculate correspondences with the current landmark at its current location

6: evaluate FOMKL
for current landmark at its temporary landmark location

7: temporarily displace the current landmark (LDF for either BFO or GALO meth-

ods)

8: end while

9: record location of maximum FOMKL
for the current landmark

10: end for

11: permanently relocate all landmarks to their new locations

12: evaluate criteria to end optimization procedure

13: increment iteration count

14: end while
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6.5.1 Brute Force Optimization

The Brute Force Optimization (BFO) method makes use of an LDF that displaces a given

landmark to every grid location within a sampling region. The sampling region 1) encap-

sulates voxels within an isometric search space of pre-defined size, 2) has the same number

of dimensions as the image, and 3) is sampled with respect to the image’s cardinal axes.

The BFO method is described below, detailing its particular LDF in line 7 of the landmark

optimization algorithm (Algorithm 2).

The sampling region is centered at the current landmark’s initial location to allow for

potential displacement to a landmark’s previous location after the set of landmarks has been

permanently repositioned. For a 3D image, let `̀̀Q,i = (xi, yi, zi) be the location of the ith

landmark in the query image. The sampling region is centered at (xi, yi, zi) and is of size

xext × yext × zext, where xext = yext = zext for an isometric search space. Thus, the origin of

the sampling region is at (xi − xext

2
, yi − yext

2
, zi − zext

2
). The landmark is initially positioned

at the origin and displaced along the cardinal axes at sampling intervals of ∆x = 1, ∆y = 1,

and ∆z = 1 for the x-, y-, and z-coordinates, respectively. Since every location is sampled

within this region, a local maximum within the sampled space is guaranteed to be identified.

At each sampled location, correspondences are calculated and FOMKL
is evaluated. When

the entire region has been traversed the location yielding the largest value for FOMKL
is

recorded. This new location is defined as

`̀̀′Q,i = (xi + nx∆x, yi + ny∆y, zi + nz∆z), (6.9)

where nx, ny, and nz are between 0 and xext, yext, and zext, respectively, and correspond to

the nth sampled location along the respective axes. After local maxima have been determined

for the set of landmarks, each landmark is permanently displaced to its maximum location.

This iterative process is repeated for the set of landmarks until one of the three end criteria

discussed in the previous section is satisfied.

Even though the BFO technique is computationally intensive, critical information re-

garding the figure of merit as a function of landmark displacement can be obtained since

identifying local extrema is guaranteed. Specifically, the figure of merit as a function of
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landmark displacement can be investigated, and it can be shown that the global maximum

for FOMKL
occurs at or near a landmark’s ground-truth location. In this case, the LDF

keeps all but one query landmark fixed at their ground-truth locations and the optimiza-

tion procedure displaces the unfixed landmark throughout the entire image, and FOMKL

is evaluated for each iteration. The figure of merit should be maximized when the unfixed

landmark reaches its ground-truth location.

Figure 6.6: a. Coronal and b. sagittal cross-sections of a synthetic brain image shown with
the sets of medial nodes and landmarks (pink) overlayed. c. The sets of medial nodes and land-
marks used to demonstrate the brute force optimization technique. The landmark being displaced
throughout the image is shown as yellow.

To demonstrate this phenomenon an experiment was conducted with a 3D image gen-

erated from the parametric brain model. This image was of size 100 × 100 × 100 voxels

and used as both the reference and query images (Fig. 6.6). Medial nodes were extracted

from the reference image at the center of the eyeballs and throughout the cerebellum. Query

nodes were obtained by manually and randomly perturbing the location and dimensionality

of the medial nodes from the reference image to introduce variation between the reference

and query landmarks. Landmarks were assigned perfect spherical dimensionality (recall

λ1 = λ2 = λ3 = 1
3

for a perfect sphere) and a scale smaller than that of spherical nodes

calculated from the image so as to not confuse a landmark for an spherical node.

A total of 10 medial nodes were extracted from the reference image: a spherical node

in the right eyeball, a cylindrical node in the left eyeball, and 7 slab-like nodes throughout

the cerebellum. Three landmarks were used for both images: 1 at the center of each eyeball
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and 1 along the surface of the brainstem. The location of these landmarks, in data space

coordinates, are tabulated in Table 6.3. The nodes and landmarks are shown without the

image in Fig. 6.6c. The “brainstem” landmark was chosen to be the unfixed landmark and

is highlighted yellow.

Table 6.3: The set of landmarks for demonstrating the brute force optimization technique.

Anatomical Location Data Space Coordinates (x,y,z)

Fixed Landmark 1 Center of Right Eyeball (62.5, 35, 25)

Fixed Landmark 2 Center of Left Eyeball (37.5, 35, 25)

Brain Stem Surface of Brainstem (50, 25, 50)

It was expected that as the “brainstem” landmark was moved closer to its ground-truth,

the figure of merit would increase, peaking at the ground-truth location. While the landmark

was far from its ground-truth, not much change was expected in the figure of merit since

such large geometric distortions will no longer affect correspondences. Thus, for this reason,

and for the sake of computation, rather than sampling all 1003 voxels, 3 sampling schemes

were utilized in a coarse-to-fine sampling resolution. The unfixed landmark was displaced

for 3 sampling intervals within 3 different regions. First, a 25-voxel interval was used for the

entire domain of the image. Next, a 5-voxel interval was used for a 25× 25× 25 voxel region

centered at the landmark’s ground-truth location. Finally, a 1-voxel interval was used for a

5×5×5 voxel region centered at the landmark’s ground-truth. The coarse sampling regions

verified that the figure of merit would not be maximum far away from the ground-truth.

The finer sampling region allowed the figure of merit to be observed when the landmark

was near its ground-truth. Ideally, displacing the landmark to maximize the figure of merit

would lead directly to the ground-truth. Thus, if the landmark was initialized fairly close to

the ground-truth, convergence to the ground-truth would be highly likely.
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a. b.

c. d.

e. f.

Figure 6.7: Correspondence matrices for each of the metrics used within the correspondence
framework when the unfixed landmark is at ground-truth. Left: Dashed lines subdivide the cor-
respondence matrices into node-to-node (lower left subdivision), node-to-landmark (upper left and
lower right subdivisions), and landmark-to-landmark (upper right subdivision) correspondences.
Right: Landmark correspondence matrices extracted from their respective correspondence matri-
ces. a). Unary, c). binary, and e). trinary correspondence matrices. b). Unary, d). binary,
and f). trinary landmark correspondence matrices.

Correspondences were determined and the figure of merit was computed at each dis-

placement iteration. The calculated correspondence matrices with the unfixed landmark

at its ground-truth are shown with the landmark correspondence matrices in Fig. 6.7. In

the figure, dashed lines subdivide the correspondence matrices into node-to-node (lower left

subdivision), node-to-landmark (upper left and lower right subdivisions), and landmark-to-

landmark (upper right subdivision) correspondences. By observing the landmark correspon-

dence matrices on the right side of the figure it can be seen that, as expected, the unary

LCM is all white, and the binary and trinary LCM have a dominant diagonal. The figure of

merit (Eq. 6.4), with and without penalty ρ, was calculated at the landmark’s ground-truth

for each metric (Table 6.4).
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Table 6.4: Figure of merit for each metric when the unfixed landmark is at its ground-truth.

Unary Metric Binary Metric Trinary Metric

With Penalty 1.0 0.508 0.690

Without Penalty 1.0 0.652 0.774

Table 6.5: Figure of merit for each metric when the unfixed landmark is at the maximum.

Unary Metric Binary Metric Trinary Metric

With Penalty 1.0 0.633 0.754

Without Penalty 1.0 0.800 0.848

The maximum value for FOMKτ was determined to occur at location (50, 25, 51), one

voxel along the z-axis from the ground-truth. The figure of merit calculated for each cor-

respondence matrix is shown in Table 6.5. In Figs. 6.8 and 6.9 are graphs of the figure

of merit (with and without penalty) versus the distance of the landmark’s location to the

ground-truth. As shown in either graph, the maximum occurs at a landmark error of 1 voxel.

Also shown is an approximate 2.5 voxel accuracy for determining the correct location of the

landmark in the presence of the manual perturbation in the location and dimensionality of

the query nodes. Excluding the penalty factor in the figure of merit calculation merely shifts

the data vertically. Also of note is the asymptotic behavior of FOMKτ as the landmark

error increases. When the unfixed landmark is moved too far from its ground-truth, cor-

respondences consisting of the unfixed landmark remain unchanged resulting in a baseline

correspondence measure consisting of the other landmark correspondences.
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Figure 6.8: Figure of merit calculated with cross-correspondence penalty as a function of landmark
error.
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The correspondence metric value for the unfixed landmark as a function of landmark error

is shown in Fig. 6.10. From the graph, it can be seen that there is good correspondence at

the landmark’s ground-truth among other locations. However, due to the cumulative nature

of the correspondence matrix and variation introduced into the query landmarks, the figure

of merit was not maximized exactly at the ground-truth.

Figure 6.9: Figure of merit calculated without cross-correspondence penalty as a function of
landmark error.
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Figure 6.10: The unfixed landmark’s correspondence metric value as a function of landmark error.
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The figure of merit evaluated at each location in the 53 sampling region is visualized

as a series of 2D images, as shown in Figs. 6.11 and 6.12. Each 2D image shows the value

FOMKτ scaled to color at each location in the 5×5 x-y plane while varying the z-coordinate.

Additionally, a contour was created from these 2D images to better assess the smoothness

of the figure of merit as a function of location. It is clear from observing the contours, that

there exists a smooth path for increasing values of FOMKτ to the maximum value. This was

a critical new insight into the optimization problem, which encouraged the development of a

more clever and efficient means of displacing the landmark. The new optimization technique

is called gradient ascent-like optimization (GALO) and is detailed in the following section.

Figure 6.11: The figure of merit is displayed for the landmark in a 5× 5 region in the x-y plane
for a.) z = 49 and b.) z = 50. The ground-truth location of the landmark at (50, 25, 50). Note
that the color scale is different between images.
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Figure 6.12: The figure of merit is displayed for the landmark in a 5× 5 region in the x-y plane
for a.) z = 51 and b.) z = 52. The maximum figure of merit is at (50, 25, 51). Note that the color
scale is different between images.
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6.5.2 Gradient Ascent-Like Optimization

The Gradient Ascent-Like Optimization (GALO) method is a greedy algorithm that utilizes

the concept of gradient ascent, which is commonly used to maximize continuous, differen-

tiable equations by moving in the direction of the gradient towards the global maximum.

In general, greedy algorithms take the current local optimum with the hope of eventually

finding the global optimum [111, 112, 113]. Greedy algorithms tend to be computation-

ally efficient and give reasonable approximations of the global optimum. However because

they do not usually consider all of the data, finding the global optimum is not guaranteed.

Additionally, if a greedy algorithm makes erroneous commitments too early, they will be

prevented from finding the global optimum. To combat these pitfalls, special care was taken

to prevent them from occurring within the GALO method. The GALO method uses a sam-

pling region in the same manner as the BFO method. If a plateau, i.e., where the maximum

occurs for more than one consecutive location, is detected, the location furthest from the

initial landmark location is utilized to advance the optimization. Also, if a local maximum

is detected, the optimization process is advanced for another iteration to ensure that it was

indeed at a maximum, i.e., the new maximum figure of merit will be less than the previous

maximum figure of merit.

As shown in the previous section, the figure of merit as a function of landmark location

is locally smooth. Utilizing this observation, it is reasonable to assume that there exists a

gradient vector, which gives an approximate direction to the maximum figure of merit within

the search space. This gradient vector is determined by first evaluating the figure of merit for

each location along the cardinal axes (within the sampling region). The location that yields

the maximum figure of merit along each cardinal axis is recorded under the hypothesis that it

is a projection of the maximum location. These projections are then composed into a gradient

vector, originating from the initial landmark location in the direction of the maximum. To

determine the location that yields the maximum figure of merit along this gradient vector, a

variant of the bisection method was devised. The bisection method is a common method for

solving for the roots of a function by dividing the search interval in half at each iteration. A

sign change of the function evaluated at the interval’s midpoint determines the new interval.
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Rather than a sign change, the GALO method looks for an increase in figure of merit at the

midpoint to determine the new interval. The bisection method was implemented in a similar

way as described in Numerical Recipes in C [114]. Estimating landmark location with the

GALO method is explored in the following chapter.
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7.0 ASSESSING METRIC PERFORMANCE IN THE PRESENCE OF

GEOMETRIC VARIATION:

In this chapter, the performance of the correspondence method is assessed in the presence of

geometric variation between structures. Geometric variation is introduced by perturbing the

location and scale of structures between images via the parametric model defined in Chapter

5. Correspondences are validated by their accuracy in inferring the location of anatomical

landmarks. Since the ground-truth for landmark location is established by the paramet-

ric model, correspondence performance is quantified by the error in estimating landmark

location as defined in Section 6.3.

Several experimental trials were conducted to investigate the capabilities of the corre-

spondence and landmark estimation methods. For each trial, images were created from

the parametric model (Chapter 5) with structures in the query image being geometrically

perturbed from those structures in the reference image. Landmarks were initialized in the

query image with the triplet transform method described in Section 6.4. For these trials,

a 3D image of size 100 × 100 × 100 voxels was generated from the parametric brain model

using the parameters listed in Table 5.3 (Section 5.3).

Medial nodes were extracted at the center of the eyeballs and throughout the cerebellum.

A total of 10 medial nodes were extracted from the reference image: a spherical node in the

right eyeball, a cylindrical node in the left eyeball, and 7 slab-like nodes throughout the

cerebellum. These nodes are shown with the image and landmarks in Fig. 6.6 (Section

6.5.1). Landmarks were assigned perfect spherical dimensionality and a scale of 3. The

three landmarks tabulated in Table 6.3 (Section 6.5.1) were placed in the reference image.
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7.1 DISPLACEMENT ALONG THE CARDINAL AXES

For this trial, the right eyeball was displaced in the query image. Displacement of the right

eyeball in both positive and negative directions along the cardinal axes occurred at 5-voxel

intervals with a maximum distance of 10-voxels along one of the cardinal axes. Shown

in Figs. 7.1-7.3 are graphs of individual landmark error versus displacement of the right

eyeball along each cardinal axis. A displacement of 0 indicates that the right eyeball is at

the same location as in the reference image. A negative displacement indicates that the

right eyeball was moved in the negative direction toward the image center, and a positive

displacement indicates that the right eyeball was moved in the positive direction towards

the image edge. The “right eyeball” landmark was most effected by each displacement since

it is near the node associated with the right eyeball. As expected the landmark error was

lowest near 0 displacement, and increased as the right eyeball was moved further away. The

largest landmark error was approximately 2.6 voxels. The landmark error for the other two

landmarks varied between 0 and 1.5 voxels. The average of errors for the set of landmarks

EL was calculated for each displacement along each axis. These error measures are tabulated

in Table 7.1 with their associated standard errors of the mean.

Figure 7.1: Landmark error vs. displacement of the right eyeball along the x-axis. A displacement
of 0 indicates that the right eyeball is at the same location as in the reference image.
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Figure 7.2: Landmark error vs. displacement of the right eyeball along the y-axis. A displacement
of 0 indicates that the right eyeball is at the same location as in the reference image.
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Figure 7.3: Landmark error vs. displacement of the right eyeball along the z-axis. A displacement
of 0 indicates that the right eyeball is at the same location as in the reference image.
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Table 7.1: Average landmark error and standard error for each displacement of the right eyeball
along the cardinal axes.

Displacement (voxels) x-axis y-axis z-axis

EL (voxels) EL (voxels) EL (voxels)

-10 1.69 ± 0.46 1.28 ± 0.22 1.36 ± 0.39

-5 1.12 ± 0.53 1.25 ± 0.18 1.01 ± 0.62

0 1.43 ± 0.23 1.19 ± 0.11 0.25 ± 0.25

5 1.30 ± 0.41 1.28 ± 0.31 0.55 ± 0.28

10 1.23 ± 0.29 1.07 ± 0.16 1.08 ± 0.64
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7.2 MEDIAL AND LATERAL DISPLACEMENT

In the second experimental trial, the effects of displacing multiple structures on estimating

landmark location were investigated. In particular, nodes associated with each eyeball were

displaced medially and laterally. For medial/lateral displacement, the nodes were moved from

their initial locations toward the image center/edge at 2.5 voxel intervals for a maximum

displacement of 10 voxels. Landmark error was computed for each landmark and graphed

against medial (Fig. 7.4) and lateral (Fig. 7.5) displacement. From each figure it is observed

that landmark error for the “right eyeball” and “left eyeball” landmarks increases as the

eyeballs are displaced away from their initial locations. Similar to the previous experiment,

the “brainstem” landmark is not significantly effected by eyeball displacement. The average

of landmark error and standard error for each landmark is tabulated in Table 7.2. For both

modes of displacement the average landmark error was approximately 2.5 voxels for each

“eyeball” and approximately 1 voxel for the “brainstem” landmark. Note that the standard

error calculations support the observation that the “eyeball” landmarks were more effected

by displacement than the “brainstem” landmark.

Figure 7.4: Landmark error vs. medial displacement of the eyeballs.
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Figure 7.5: Landmark error vs. lateral displacement of the eyeballs
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Table 7.2: The average of each landmark’s location error as a function of medial or lateral dis-
placement.

Displacement R. Eyeball Landmark L. Eyeball Landmark Brainstem Landmark

EL (voxels) EL (voxels) EL (voxels)

Medial 2.68 ± 0.22 2.58 ± 0.27 0.98 ± 0.12

Lateral 2.63 ± 0.23 2.35 ± 0.22 1.32 ± 0.07

7.3 SCALE VARIATION

In this third experiment, landmark location estimation was investigated in the presence of

variable eyeball diameter. Rather than extracting medial nodes from images generated from

the parametric model, node scale was directly varied to eliminate any sampling artifacts that

may occur during node extraction. The nodes extracted from both eyeballs were increased

and decreased in scale at 5 voxel increments for a maximum scale change of 10 voxels

from the original scale. Recall that the unary metric evaluates singlet correspondences

by similarity in scale and dimensionality. In this experiment, the parameters for scale and

dimensionality were equal in weighting (the flexibility of these parameters for tolerating scale

variation is explored in the following experiment). Shown in Fig. 7.6 is landmark error as a

function of change in scale. The approximate error for each landmark was 1 voxel with no

apparent dependency on scale. This observation was quantitatively confirmed by computing

the average error and standard error for each landmark over all scales. The average error for

the “right eyeball,” “left eyeball,” and “brainstem” landmark was 1.12 ± 0.032 voxels, 0.98

± 0.055 voxels, and 1.01 ± 0.056 voxels, respectively.
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Figure 7.6: Landmark error as a function of change in node scale for the nodes extracted from
the eyeball.

7.4 SCALE VARIATION AND THE UNARY METRIC

The effects of the unary metric parameters on correspondences and landmark location es-

timation in the presence of scale variation were examined in this fourth experiment. The

right and left eyeball nodes were scaled to 28.00 and 28.24 voxels, respectively. Correspon-

dences were determined while varying the scale term parameter for the unary metric bµ from

0.3 to 0.6 in 0.1 increments. For each value of bµ, landmark locations were estimated and

landmark errors were calculated for each landmark (Table 7.3). As bµ decreased, there is a

general decrease in error for each landmark. A persistent decrease in landmark error was

not observed due the nature of the optimization procedure to potentially improve upon a

landmark’s location at the expense of another landmark. A better measure is the average

of landmark errors for each bµ. These measures are also reported in Table 7.3, indicating an

overall decrease in landmark error, i.e., increased accuracy in estimating landmark location.

After estimating landmark location for each bµ, correspondences were recomputed with

the query landmarks placed at their estimated locations. The resulting trinary correspon-
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dence matrices are shown in Fig. 7.7. When bµ = 0.5, the nodes extracted from the right

(orange square) and left (blue square) eyeballs have very low correspondence values. How-

ever, when bµ was decreased to 0.4 and 0.3, the eyeball nodes have significantly higher corre-

spondence values. Also note that when bµ = 0.3 and bµ = 0.4, there is very little observable

differences between the matrices. In particular, the landmark correspondence matrices are

very similar, which is a likely explanation for the right and left eyeball landmark estimates

being identical for each of these values of bµ.

In summary, by adjusting the weight on the scale term of the unary metric, correspon-

dences can be determined in the presence of scale variation. This first prototype of MCTILL

did not justify a complete tuning of metric parameters or large-scale validation. Rather, it

was a test, not just for the system itself but for methods of validation and parameter tuning

that would be applied to a future system that utilizes improved features.

Table 7.3: Each landmark location error for multiple values of bµ.

Right Eyeball Landmark Left Eyeball Landmark Brainstem

bµ EL (voxels) EL (voxels) EL (voxels) EL (voxels)

0.6 1.10 0.82 1.94 1.28 ± 0.34

0.5 1.23 1.15 1.04 1.14 ± 0.056

0.4 0 1.00 1.50 0.83 ± 0.44

0.3 0 1.00 0.89 0.63 ± 0.32
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Figure 7.7: Trinary correspondence matrices calculated with the query landmarks placed at their
estimated locations while varying the scale term of the unary metric bµ. The orange square indicates
the nodes extracted from the right eyeball, and the blue square indicates the nodes extracted from
the left eyeball. The upper right partition bound by the dashed white lines is the landmark
correspondence matrix.
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7.5 LOCATION AND SCALE VARIATION

In this fifth experiment, both location and scale variation was introduced. The eyeball nodes

were displaced laterally by 10 voxels, and the scale of each eyeball node was increased by

10 voxels. Correspondences were computed with bµ = 0.3 and bµ = 0.4 since these values

yielded sub-pixel accuracy for the same scale perturbation in the previous experiment.

With bµ = 0.4, the landmark errors for the “right eyeball,” “left eyeball,” and “brain-

stem” landmarks were 3.76, 3.11, and 1.90 voxels, respectively with an average landmark

error of 2.92 ± 0.54 voxels. For bµ = 0.3, landmark errors for the “right eyeball,” “left

eyeball,” and “brainstem” landmarks were 3.37, 3.03, and 1.48 voxels, respectively with an

average landmark error of 2.63 ± 0.58 voxels. With either parameter value, an approximate

3 voxel error for estimating the location of the “eyeball” landmarks is probably acceptable

considering that the eyeballs are 30 voxels in diameter.

7.6 COMPARISON TO MANUAL LANDMARK IDENTIFICATION

This final experiment is an attempt to determine acceptable error measures for automated

landmark placement by comparison to the accuracy in manually identifying landmarks. In

practice, it is common to utilize manual landmark placement as ground-truth if there is suffi-

cient intra- and inter-user reliability since a parametric ground-truth is usually not available.

In this experiment, an expert user (the author) manually identified the “right eyeball,” “left

eyeball,” and “brainstem landmarks” in several sets of perturbed data. Only the author par-

ticipated in this experiment because he designed the software interface, and knew the exact

structure parameters and landmark locations as parametrically defined. Thus, errors can be

directly attributed to the user’s ability to place landmarks and not any of the aforementioned

technicalities.
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7.6.1 Software Interface and Landmark Placement Protocol

The software interface displays the reference and query images as 3 orthogonal cross-sections

adjacent to each other. The reference landmarks are overlayed on the reference image to

provide a frame of reference to the user. A landmark is displayed as an orange point with a

translucent blue sphere centered at that point. The user interacts with the query image to

place a landmark with a single mouse-click. To isolate a desired location in the query image,

the user is able to rotate and translate the image volume, slice through the volume with the

2D cross-sections, and zoom the camera in and out.

The protocol for placing a landmark relied on first locating a desired landmark in the

reference image. After appropriately orienting the volume, a cross-section was translated

until the orange point just became visible. The same cross-section was then sought in the

query image by identifying similar structure geometry in the image slice. This was repeated

for other cross-sections to further isolate the area of interest. The landmark of interest

was then placed with a click of a mouse button. Landmarks were placed by observing the

landmark location in the reference image and using prior information about the location

of the landmark. For instance, the eyeball landmarks are located exactly in the center of

the eyeballs. The brainstem landmark is on the anterior surface of the brainstem and the

brainstem is easily located by slicing through the sagittal plane.

7.6.2 Empirical Results

In the first study, two trials were performed following the same structure displacement for

the experiment performed in Section 7.1, i.e., the right eyeball was displaced at 5 voxel

intervals from the original location along each direction of the cardinal axes at a maximum

displacement of 10 voxels. In trial 1 the reference and query images were identical, providing

a baseline comparison for how well landmarks could be manually placed in the absence

of geometric perturbations. In trial 2, the query image was the perturbed version of the

reference image as in the original experiment. The time to place landmarks was not recorded,

but it generally took less than 30 seconds to place all 3 landmarks.
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For displacement along a given axis, the average of landmark errors was computed for

each manual trial. Shown in Figs. 7.8-7.10 are the results for the manual trials compared to

that of the automated trials. The error bars represent the standard error of the mean.

Placing the “brainstem” landmark proved to be more difficult than the others since there

are no structure details to provide image cues. The automated method was nearly as accurate

in estimating the location of the “eyeball” landmarks, and more accurate in estimating the

location of the “brainstem” landmark.
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Figure 7.8: Average landmark error for each trial as the right eyeball was displaced along the
x-axis. Note that there was no error when placing the “right eyeball” landmark during the second
manual trial.
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Comparison of Manual and Automated 
Landmark Placement (y-axis displacement)
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Figure 7.9: Average landmark error for each trial as the right eyeball was displaced along the
y-axis
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Figure 7.10: Average landmark error for each trial as the right eyeball was displaced along the
z-axis
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In this next study, manual landmark placement for medial and lateral eyeball displace-

ment was investigated and compared to the results obtained with the automated method in

Section 7.2. Shown in Figs. 7.11 and 7.12 are the average landmark errors for each of the

trials. Manual landmark placement proved to yield very accurate results. The automated

method had significantly larger error for most landmarks, but still a maximum error of less

than 3 voxels.
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Figure 7.11: Comparison of manual versus automated method of estimating landmark location
in the presence of medial displacement of the eyeballs. The average of landmark errors is shown
with error bars depicting standard error of the mean.
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Figure 7.12: Comparison of manual versus automated method of estimating landmark location
in the presence of lateral displacement of the eyeballs. The average of landmark errors is shown
with error bars depicting standard error of the mean.
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In this study, the diameter of both eyeballs was increased by 10 voxels and they were

laterally displaced by 10 voxels. Landmarks were manually placed 5 times and compared to

the automated results presented in Section 7.5. Shown in Fig. 7.13 is the average landmark

error for the 5 manual trials compared to the landmark error for the automated method

computed with bµ = 0.3 and bµ = 0.4. The manual method yielded an approximate 1 voxel

accuracy for each landmark. The automated method produced an approximate 3.5 voxel

accuracy for the “eyeball” landmarks and 2 voxel accuracy for the “brainstem” landmark.
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Figure 7.13: Comparison of methods for estimating landmark location in the presence of lateral
displacement and scale variation of the eyeballs. The average of landmark error is shown for 5
manual trials. Two automated trials are shown with bµ = 0.3 and bµ = 0.4.
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8.0 PROGRAMMING TECHNIQUES

Programming tasks were achieved with the C++ programming language and various open-

source toolkits. Image analysis related methods were developed with the Insight Toolkit

(ITK) to utilize ITK’s image architecture and vast array of imaging base classes [115, 116].

The ITK project started in 1999 by the National Library of Medicine (NLM) for the devel-

opment of an open-source, cross-platform segmentation and registration toolkit. The Insight

Software Consortium originally consisted of 6 prime contractors and several subcontractors,

which included the University of Pittsburgh. As a contributing developer and user of ITK

since its conception, the coding standards established by ITK were followed for the possible

contribution of this research to ITK for use by the image analysis community.

Graphical User Interfaces (GUI) were programmed with the Fast Light Toolkit (FLTK),

which provides modern GUI functionality and supports 3D graphics [117]. The FLTK-based

interfaces were produced with a freely available, GUI-based, user interface builder called

FLUID. Data was visualized with the Visualization Toolkit (VTK) [118], which supports a

wide variety of visualization algorithms and advanced modeling techniques.
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9.0 CONCLUSIONS

Developed in this dissertation are novel methods for determining inter-image correspon-

dences between cliques of features and inferring the location of anatomical landmarks from

such correspondences. Correspondences are determined from a hierarchy of metrics that

quantify inter-image clique similarity by properties inherent to the features and the ge-

ometric relationship between the comprising features and landmarks. The correspondence

approach differs from others in that the medial features describe shape properties in addition

to intensity, and the metrics rely on more than a distance measure. Both the correspon-

dence and landmark estimation methods are automated and invariant to global rotation and

translation.

Results for the methods developed in this dissertation are encouraging. The correspon-

dence hierarchy was first validated on identical images with ROC curve analysis, then later

validated for images containing structural variation. This validation process was based on

the accuracy in inferring the location of anatomical landmarks for various structure pertur-

bations. Consequently, it was shown that anatomical landmarks could be accurately placed

in an image, with results comparable to manual placement of landmarks.

The remainder of this chapter summarizes the results and revisits the claims made in

Chapter 1.2, concluding with potential future directions for the research.
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9.1 CLAIMS REVISITED

The claims made in Chapter 1.2 are revisited and reviewed in this section.

Claim 1 By using a hierarchy of similarity metrics, inter-image correspondences between

cliques of features can be determined.

Towards the goal of automatically determining feature correspondences, the geometric

relationships between features was utilized as constraints and a hierarchy of similarity

metrics were developed. The correspondence framework was first demonstrated with

identical images containing two concentric ellipsoids in Chapter 3.6. In two separate ex-

periments, global rotational and translational invariance was demonstrated with images

containing rotated and translated concentric ellipsoids (Chapter 3.6.1.2). The accuracy

of the framework was assessed with ROC curve analysis on two simulated MRI brain

images, and results showed that accuracy increased with each successive metric in the

correspondence hierarchy.

In medical image analysis, feature-based methods for determining correspondences

typically operate by mapping the features into a common coordinate system, and then

minimizing a global distance metric for the set of features. The correspondence frame-

work developed here also uses distance as a component in its metrics, but is restricted

to only local intra-clique distance. By utilizing clique-based metrics, the correspondence

framework is less sensitive to outliers and features absent from one of the images. Com-

mon approaches to the correspondence problem utilize intensity-based features such as

boundary points, ridges, corners etc., making them sensitive to image noise. The fea-

tures used here also describe local shape properties providing a more robust means for

determining correspondences.

Claim 2 By incorporating global geometric constraints into the correspondence hierarchy,

correspondence accuracy can be improved.

A method was developed in chapter 4 for improving upon correspondences by utilizing

global geometric information. The method operates by first computing an affine trans-
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form that is implied by a triplet correspondence. The transform is then applied to every

query image triplet and a measure of fit is calculated with the corresponding reference

image triplets. These measures of fit are accumulated for each triplet with a high fitness

measure being consistent with the geometry of other cliques. Thus, this method employs

a loose constraint of a global affine transformation by consensus. By empirical verifica-

tion in Chapter 4.3, it was shown with ROC curve analysis on two simulated MRI brain

images, with the query image being a transformed version of the reference image, that

the addition of this method improves the accuracy of the correspondence hierarchy.

Claim 3 By defining a parametric model, it is possible to establish ground-truth for vali-

dating correspondences in the presence of variations in structure geometry.

A parameterized model emulating a CT scan of a human brain was defined in Chapter 5.

Brain structures were modeled with parametrically defined shape primitives, and com-

binations of such shapes with computational shape geometry. Structures encompassing

the model included the cortices, eyeballs, optic nerves, brain stem, cerebellum, lateral

ventricles, and thalami. The model was developed to permit systematic perturbation of

structure geometry to assess correspondence performance under such conditions. Also

provided by the model was an automated means for defining anatomical landmarks and

establishing their ground-truth in a distorted query image, which played a crucial role in

correspondence validation.

Claim 4 Landmark locations can be inferred from feature correspondences and automati-

cally placed in a query image to validate the correspondence method, as well as provide

anatomical information to the user.

A technique for estimating the location of anatomical landmarks in an image was devel-

oped in Chapter 6. Analogous to atlas-based registration, a reference image containing

predefined landmarks is used to place those landmarks in a new query image. The

method relies on determining correspondences between cliques extracted from the refer-

ence and query images, with each clique containing features and landmarks. Thus, the

cliques describe the geometric relationships between constituent features and landmarks.
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By adding landmarks to the cliques along with the features, landmark location can be

inferred by means of an optimization procedure that maximizes a landmark correspon-

dence figure of merit. Two optimization procedures were developed. In Chapter 6.5.1,

the brute force method was developed and tested on two images from the brain model.

The brute force method provided critical insight into the optimization problem, namely,

validation of smoothness nd unimodality, which allowed for the development of a faster

gradient ascent-like method in Chapter 6.5.2. With this new optimization technique, as

was shown in Chapter 7, correspondences were validated in the presence of geometric

variation by their accuracy in inferring landmark location.

Claim 5 Correspondences can be validated for differing images by their accuracy in inferring

the location of anatomical landmarks in a query image.

Since it is difficult to establish ground-truth for correspondences in the presence of geo-

metric variation, a theory based on the parametric model was developed for validating

correspondences under such conditions. The parametric model not only allowed for sys-

tematic perturbation of the data, but provided an automated means to parametrically

define ground-truth for landmarks. Thus, an error measure could be calculated between

the estimated landmark locations and their ground-truth as a function of geometric varia-

tions between structures. In Chapter 7, results were presented for a number of structural

perturbations that indicated correspondences can infer landmark locations accurately,

and nearly as well as an expert user manually identifying landmark locations.
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9.2 FUTURE RESEARCH DIRECTIONS

Central to this dissertation was the development of a novel framework for determining

feature-based correspondences. These medial nodes based on core atoms were utilized be-

cause they are typically sparse and provide a measure of local shape properties. Medial nodes

have inherent limitations, but permitted the development of the correspondence framework

in anticipation of more robust medial features being developed by others in my laboratory. In

order for the correspondence framework, and consequently the landmark estimation method,

to be viable for analyzing medical images, more robust medial features are needed. In this

light, a framework called Shells and Spheres for extracting a more complete description of

the medial manifold has been recently developed by Cois et al. [119].

Briefly, Shells and Spheres is based on a sphere map, which consists of a sphere at each

voxel in the image. The goal is to optimize the sphere map such that each sphere is grown

to touch but not cross a structure boundary. Sphere growth is governed by computing Vari-

able Scale Statistics for voxels within spherical regions and voxels among adjacent spherical

regions. Once the sphere map is optimized, measures of boundariness and medialness can be

computed. Developing new features from these boundariness and medialness measures and

integrating these features into the landmark placement procedure will benefit it significantly,

hopefully leading to a practical system for placing landmarks in medical images.

To demonstrate the potential benefits of this improved technique, landmark locations

were estimated on a contrast-enhanced CT chest image (courtesy of Robert Gorman, M.D.

and Michael Sacks, Ph.D.). In this experiment, medial nodes were extracted from a seg-

mentation of the aorta produced from the Shells and Spheres medialness measure. After the

sphere map was optimized, the segmentation was produced by labeling voxels within spheres

and neighboring spheres centered at points of significant medialness. From a binary image

of the segmentation, 146 medial nodes were extracted. Since the aorta is locally cylindrical,

slab nodes were filtered out from this set of nodes leaving 58 (mostly cylindrical) nodes. In

the sagittal plane roughly bisecting the descending aorta, three landmarks were placed at

arbitrary locations on the surface of the aortic arch. The CT image is shown with a surface

model of the segmentation in Fig. 9.1. Also shown are the set of medial nodes extracted
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from the segmentation image and landmarks placed on the aortic arch. Correspondences

were then determined and landmark locations were estimated. The unary, binary, and tri-

nary correspondence matrices are shown in Fig. 9.2. The errors in estimating landmark

location were 3.03, 2.53, and 2.30 voxels for an average error and standard deviation of 2.62

± 0.38 voxels. Due to the large number of nodes and combinatorial complexity of form-

ing cliques (1,653 possible doublet combinations and 30,856 triplet combinations), several

hours were required to estimate landmark locations. The computational requirements of

the correspondence framework and landmark placement method are addressed later in this

section.

Figure 9.1: Image of the contrast-enhanced CT chest scan with a surface model of the segmen-
tation overlayed as translucent pink. Also shown are the set of extracted medial nodes and aortic
arch landmarks.
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Figure 9.2: Correspondence matrices computed for nodes extracted from the aorta segmentation
and landmarks placed on the aorta aortic arch. Each landmark correspondence matrix is shown
magnified above the respective correspondence matrix.
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Validation of the correspondence framework first relied on using identical images. By

incorporating anatomical landmarks into the correspondence framework, correspondences in

the presence of structure variation could be validated by establishing ground-truth with a

parametric model. In future medical applications, landmark ground-truth will need to be es-

tablished by an expert user. Not only does estimating the location of anatomical landmarks

provide a means for correspondence validation, but it also labels anatomical regions. Such

information can be utilized by healthcare professionals to assist them in locating anatomical

structures or features. Anatomical landmarks can also be used to assist existing segmentation

and registration methods. For example, landmarks can be used to initialize an active con-

tour or region-growing based segmentation algorithm. In segmentation-based registration,

landmarks can be used to initialize the model in the query image. Once correspondences

between medial nodes and landmarks have been established either may prove directly useful

in a registration method.

Towards improving correspondences and consequently automated landmark placement,

the triplet transform metric should be included in the correspondence hierarchy. Due to

the processing time required for computing the triplet transform metric, it was left out of

the iterative landmark optimization procedure. An initial attempt was made to improve

computation speed by computing transforms for only those triplets with a single triplet

correspondence. This proved to slightly reduce computation time. Further improvement

may be accomplished by computing only enough transforms to accomplish a pre-determined

amount of accuracy or error. When analyzing a large number of features, triplet correspon-

dences could also benefit from computational improvements by removing features with low

correspondences prior to forming triplets.

In the presence of scale variation, it was shown that correspondence specificity could be

fine-tuned by adjusting the parameters of the unary metric. For applying the framework

to various image modalities and target structures, optimizing the metric parameters could

certainly be investigated further.

The automated method for estimating landmark location proved to be reasonably ac-

curate and comparable to manual trials. Major advantages of the automated method are

objectivity, consistency, and the lack of user interaction with the query image. Computation
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times are acceptable for most applications. For those applications that require fast landmark

estimation, speed improvements for the computation of triplets will help address this issue.

Moreover, the landmark optimization procedure could possibly be made faster.

To improve the accuracy of landmark estimates, a correlation-based approach could

be utilized after the optimization procedure to further isolate landmark placement based on

image intensity. A small window could be moved around each query landmark estimate until

it correlates with a small window around the corresponding reference landmark. Success of

this method would depend on local structure detail, which is the primary reason why it was

not developed in this dissertation, since the synthetic images contained purely homogeneous

structures.

Landmarks were defined as being small spheres. Future research could explore different

representations of landmarks based on prior information, e.g., landmarks associated with

blood vessels are cylindrical, or image information, e.g., landmarks take on properties similar

to neighboring features.

To further improve the correspondence and landmark placement methods, it would be

beneficial to observe an expert while they examine medical images. Learning their thought

processes while locating structures could shed some light on utilizing image cues that are

commonly used for locating specific structures as a priori information.

Developing these improvements and incorporating them into the correspondence and

landmark placement framework would facilitate their application to medical images. Thus,

accurate, reliable, and non-subjective quantitative measures and qualitative information

could be delivered to the clinician to assist in making diagnoses, planning treatment, or

identifying relationships between structure properties and pathologies.
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APPENDIX A

SIGNATURE INVARIANCE TO ROTATION IN THE DEGENERATE

SUBSPACE

In this section, the claim that a signature is independent of the global orientation of a

node pair is investigated. A medial node’s orientation is defined by its eigenvectors as

defined relative to the cardinal coordinate system. However, the eigenvalues themselves are

independent of that orientation. When two or more eigenvalues are equal, a degenerate

subspace exists that may be expressed by matrix A whose columns are the corresponding

eigenvectors A = [âi âj · · · âN ].

Rotating a node pair within the subspace defined by the degenerate eigenvectors of node

1 will redefine the eigenvectors as E = TRA = [êi êj · · · êN ], where TR is a pure rotation

matrix. The cumulative NCS between node 1 and node 2 will remain unchanged. The case

of two eigenvalues being equal is demonstrated. For the case of a 2D degenerate subspace,

rotation within that subspace is represented by

êi = âi cos(φ)− âj sin(φ)

êj = âi sin(φ) + âj cos(φ), (A.1)

where φ is a parameter of TR, and cos2(φ) + cos2(φ) = 1. The NCS for the two eigenvalues

will add to the signature at the same location on the λ- axis, namely the λi = λj, because

the unit step functions will fuse into a single unit step function, whose height is
(
d̂i

)2
+

(
d̂j

)2

independent of rotation within the degenerate subspace.
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By the Pythagorean Theorem, the quantity
(
d̂i

)2
+

(
d̂j

)2
represents the squared length of

the hypotenuse, namely, component of v projected onto the plane defined by the eigenvectors.

This quantity is a constant, independent of which coordinate system was used to calculate

it. This can be proven by calculating
(
d̂i

)2
+

(
d̂j

)2
in terms of E and A, and showing them

to be equal:

(
v̂ · êi

)2
+

(
v̂ · êj

)2
=(

αv̂ · âi + φv̂ · âj

)2
+

(
−φv̂ · âi + αv̂ · âj

)2
=(

α2 + φ2
)[(

v̂ · âi

)2
+

(
v̂ · âj

)2
]

+
(
2αφ− 2αφ

)[(
v̂ · âi

)2
+

(
v̂ · âj

)2
]

=(
v̂ · âi

)2
+

(
v̂ · âj

)2
=(

d̂i

)2
+

(
d̂j

)2
, (A.2)

where the last two equations are equal as defined in Eq. 3.5.
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APPENDIX B

COMPUTING CORRESPONDENCES EFFICIENTLY

Inherent to the correspondence framework, each step through the correspondence hierarchy

reduces the number of nodes to be considered for correspondence. However, the combinato-

rial complexity of forming cliques dramatically increases with higher order cliques, and thus

increases the number comparisons to be made. The maximum number of unique cliques that

can be formed from a set of m nodes is calculated as the total number of combinations that

k nodes can be taken from the set, i.e.,

(
m

k

)
=

m!

k!(m− k)!
, (B.1)

where k = 1 for singlets, k = 2 for doublets, and k = 3 for triplets. In the face of this potential

computational nightmare, the development of efficient data structures and algorithms was

necessary.

Suppose each image is V × V × V in size, and thus consists of V 3 voxels. The number

of medial nodes extracted from each image is quite sparse compared to the V 3 voxels in

the image, that is MR � V 3 and MQ � V 3. Each set of medial nodes is stored in a

linked-list. Recall from that the set of nodes extracted from images R and Q are denoted

as ΨR and ΨQ, respectively. When calculating singlet correspondences, the unary metric

is calculated by simply indexing the medial node lists. A total of MR × MQ unary metric

calculations are made. Once these correspondences are calculated they are stored in the

unary correspondence matrix.
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Doublet and triplet correspondences as evaluated by the corresponding binary or trinary

metric, are also stored in a binary or trinary correspondence matrix. However, an additional

special data structure is required to organize these correspondences between cliques consist-

ing of more than one node. The data structure serves as a mechanism for efficiently iterating

through nodes for computing clique correspondences.

The correspondence data structure comprises several embedded linked-lists that store

node indices from ΨR and ΨQ. The first layer of the data structure consists of a linked-list

referred to as the “base-list.” The base-list is the same length as the medial node list from

the reference image. Embedded within each element of the base-list is a linked-list called the

“secondary-list,” in which the index of a clique’s base node from the reference image is stored.

Each element within a given secondary-list, contains the same base node index, i.e., the node

in the corresponding element of the base list (see Fig. B1). Described below is the relevance

of this when iterating the doublet data structure for determining triplet correspondences. A

doublet’s other constituent nodes are stored in a “correspondence-list,” which is embedded

at a location specific to that doublet in the secondary-list. The correspondence-list also

contains a clique data structure, which stores the index of each corresponding doublet in the

query image.

To illustrate the use of the correspondence data structure, the algorithm for determin-

ing doublet correspondences is described. In this algorithm, doublet distance is used as a

constraint prior to computing the binary metric (Eq. 3.11). For each image, doublet dis-

tance is computed between all pairs of nodes. Doublet distances are then compared between

images. If pairs of doublets have similar doublet distances, the unary metric is compared

for individual nodes within the doublets. If the unary metrics are similar, then the binary

metric is calculated. If it satisfies the binary metric threshold, then both cliques are stored

in the doublet data structure. The index of a “base node” from the reference image doublet

is stored in the secondary list. The index of the second node in the reference image doublet

is stored in its particular correspondence-list. The indices of the corresponding doublets in

the query image are stored as a clique index structure in the correspondence-list.

A simplified correspondence data structure containing doublet correspondences is illus-

trated in Fig. B1. Note that for the purposes of clarity, node indices are indicated as nα,i.
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The base-list is of length 7, which is equivalent to the number of nodes from the reference

image. Shown in yellow is a pair of corresponding doublets. The base node of the refer-

ence image doublet nR,4 is stored in the secondary-list, which is located at index 4 of the

base-list. The second node’s index of the reference image doublet, nR,3 is stored in the

correspondence-list. The corresponding clique from the query image, CQ,7 is also stored in

the correspondence-list.
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Figure B1: Data structure for efficiently storing doublet correspondences. Shown in yellow are
corresponding doublets, and shown in pink are two pairs of corresponding doublets to be considered
for triplet formation.

Determining triplet correspondences is straightforward with the doublet data structure.

Recall that a triplet consists of two doublets that share a base node. Such doublets are

easily indexed from within the same secondary list. A triplet is shown as pink in Fig. B1.

The secondary-list at index 1 of the base-list consists of node nR,1. Doublets with base node

nR,1 are accessed by iterating through the respective correspondence lists. Two doublets are
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shown in pink with base node nR,1 in the secondary list. Doublets (nR,1, nR,6) and (nR,1, nR,7)

therefore comprise the triplet (nR,1, nR,6, nR,7). To test for triplet correspondence, these pair

of doublets would be compared to the triplet that comprises doublets CQ,2 and CQ,6 in the

query image. Nodes are ordered in the data structure to prevent entering the same doublet

more than once. With this data structure, cliques of size up to 3 are easily represented, and

the computational load for covering clique combinations is kept to a minimum. The data

structure could be expanded to represent bigger cliques, but computation would skyrocket.

In fact, in chapter 4, a fourth node was considered via an implied transform to avoid using

4-membered cliques.
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